












 

 
 

 

 

 

 

 

 
   

Measurement Uncertainty 

Sometimes a Type B evaluation of uncertainty involves making a best guess based on all avail-
able information and professional judgment. Laboratory workers may be reluctant to make this 
kind of evaluation, but it is better to make an informed guess about an uncertainty component 
than to ignore it completely. 

A standard uncertainty u(xi) may be called a �Type A� or �Type B� standard uncertainty, depend-
ing on its method of evaluation, but no distinction is made between the two types for the pur-
poses of uncertainty propagation. 

19.3.4  Corrections for Systematic Effects 

When a systematic effect in the measurement process has been identified and quantified, a quan-
tity should be included in the mathematical measurement model to correct for it. The quantity, 
called a correction (additive) or correction factor (multiplicative), will have an uncertainty which 
should be evaluated and propagated. 

Whenever a previously unrecognized systematic effect is detected, the effect should be investi-
gated and either eliminated procedurally or corrected mathematically. 

19.3.5  Counting Uncertainty 

The counting uncertainty of a radiation measurement (historically called �counting error�) is the 
component of uncertainty caused by the random nature of radioactive decay and radiation count-
ing. Radioactive decay is inherently random in the sense that two atoms of a radionuclide will 
generally decay at different times, even if they are identical in every discernible way. Radiation 
counting is also inherently random unless the efficiency of the counting instrument is 100 %. 

In many cases the counting uncertainty in a single gross radiation counting measurement can be 
estimated by the square root of the observed counts. The Poisson model of radiation counting, 
which is the mathematical basis for this rule, is discussed in Section 19.5. Note that the use of 
this approximation is a Type B evaluation of uncertainty. 

Historically many radiochemistry laboratories reported only the counting uncertainties of their 
measured results. MARLAP recommends that a laboratory consider all possible sources of meas-
urement uncertainty and evaluate and propagate the uncertainties from all sources believed to be 
potentially significant in the final result. 

19.3.6  Expanded Uncertainty 

When a laboratory reports the result of a measurement, it may report the combined standard 
uncertainty, uc(y), or it may multiply uc(y) by a factor k, called a coverage factor, to produce an 
expanded uncertainty, denoted by U, such that the interval from y ! U to y + U has a specified 
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Measurement Uncertainty 

high probability p of containing the value of the measurand. The specified probability, p, is called 
the level of confidence or the coverage probability and is generally only an approximation of the 
true probability of coverage. 

When the distribution of the measured result is approximately normal, the coverage factor is 
often chosen to be k = 2 for a coverage probability of approximately 95 %. An expanded uncer-
tainty calculated with k = 2 or 3 is sometimes informally called a �two-sigma� or �three-sigma� 
uncertainty. In general, if the desired coverage probability is γ and the combined standard uncer-
tainty is believed to be an accurate estimate of the standard deviation of the measurement proc-
ess, the coverage factor for a normally distributed result is k = z(1 + γ) /  2, which can be found in a 
table of quantiles of the standard normal distribution (see Table G.1 in Appendix G). 

The GUM recommends the use of coverage factors in the range 2�3 when the combined standard 
uncertainty represents a good estimate of the true standard deviation. Attachment 19D describes a 
more general procedure for calculating the coverage factor, kp, that gives a desired coverage 
probability p when there is substantial uncertainty in the value of uc(y). 

The GUM does not assign a name to the interval y ± U, but it clearly states that the interval 
should not be called a �confidence interval,� because this term has a precise statistical definition 
and the interval described by the expanded uncertainty usually does not meet the requirements. 
The interval y ± U is sometimes called an �uncertainty interval.�5 

19.3.7  Significant Figures 

The number of significant figures that should be reported for the result of a measurement 
depends on the uncertainty of the result. A common convention is to round the uncertainty (stan-
dard uncertainty or expanded uncertainty) to either one or two significant figures and to report 
both the measured value and the uncertainty to the resulting number of decimal places (ISO, 
1995; Bevington, 1992; EPA, 1980; ANSI N42.23). MARLAP recommends this convention and 
suggests that uncertainties be rounded to two figures. The following examples demonstrate the 
application of the rule. 

5 When the distribution of the result is highly asymmetric, so that the result is more likely to fall on one side of the 
value of the measurand than the other, the use of a single expanded uncertainty, U, to construct a symmetric uncer-
tainty interval about the result may be misleading, especially if one wishes to state an approximate coverage prob-
ability for the interval. However, methods for constructing an asymmetric uncertainty interval with a stated coverage 
probability are beyond the scope of this chapter and require more information than that provided by the input 
estimates, their standard uncertainties, and estimated covariances (e.g., Monte Carlo simulation). Note that the value 
of the combined standard uncertainty is unaffected by the symmetry or asymmetry of the distribution. 
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Measurement Uncertainty 

EXAMPLES 

MEASURED 
VALUE 

(y) 

EXPANDED 
UNCERTAINTY 

U = kuc(y) 

REPORTED 
RESULT 

0.8961     0.0234 0.896 ± 0.023 

0.8961     0.2342 0.90 ± 0.23 

0.8961     2.3419 0.9 ± 2.3 

0.8961   23.4194 1 ± 23 

0.8961 234.1944 0 ± 230 

Only final results should be rounded in this manner. Intermediate results in a series of calculation 
steps should be carried through all steps with additional figures to prevent unnecessary roundoff 
errors. Additional figures are also recommended when the data are stored electronically. Round-
ing should be performed only when the result is reported. (See Section 19.5.11 for a discussion of 
the measurement uncertainty associated with rounding.) 

19.3.8  Reporting the Measurement Uncertainty 

When a measured value y is reported, its uncertainty should always be stated. The laboratory may 
report either the combined standard uncertainty uc(y) or the expanded uncertainty U. 

The measured value, y, and its expanded uncertainty, U, may be reported in the format y ± U or 
y +� U. 

The plus-minus format may be used to report an expanded uncertainty, but it generally should be 
avoided when reporting a standard uncertainty, because readers are likely to interpret it as a con-
fidence interval with a high coverage probability. A commonly used shorthand format for report-
ing a result with its standard uncertainty places the one or two digits of the standard uncertainty 
in parentheses immediately after the corresponding final digits of the rounded result. For ex-
ample, if the rounded result of the measurement is 1.92 and the standard uncertainty is 0.14, the 
result and uncertainty may be shown together as 1.92(14). Another acceptable reporting format 
places the entire standard uncertainty in parentheses. The result in the preceding example would 
appear in this format as 1.92(0.14). The laboratory may also report the standard uncertainty 
explicitly. 

Since laboratories may calculate uncertainties using different methods and report them using 
different coverage factors, it is a bad practice to report an uncertainty without explaining what it 
represents. Any analytical report, even one consisting of only a table of results, should state 
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Measurement Uncertainty 

whether the uncertainty is the combined standard uncertainty or an expanded uncertainty, and in 
the latter case it should also state the coverage factor used and, if possible, the approximate cov-
erage probability. A complete report should also describe the methods used to calculate the un-
certainties. If the laboratory uses a shorthand format for the uncertainty, the report should include 
an explanation of the format. 

The uncertainties for environmental radioactivity measurements should be reported in the same 
units as the results. Relative uncertainties (i.e., uncertainties expressed as percentages) may also 
be reported, but the reporting of relative uncertainties alone is not recommended when the meas-
ured value may be zero, because the relative uncertainty in this case is undefined. A particularly 
bad practice, sometimes implemented in software, is to compute the relative uncertainty first and 
multiply it by the measured value to obtain the absolute uncertainty. When the measured value is 
zero, the uncertainty is reported incorrectly as zero. Reporting of relative uncertainties without 
absolute uncertainties for measurements of spiked samples or standards generally presents no 
problems, because the probability of a negative or zero result is negligible. 

It is possible to calculate radioanalytical results that are less than zero, although negative radio-
activity is physically impossible. Laboratories sometimes choose not to report negative results or 
results that are near zero. Such censoring of results is not recommended. All results, whether pos-
itive, negative, or zero, should be reported as obtained, together with their uncertainties. 

The preceding statement must be qualified, because a measured value y may be so far below zero 
that it indicates a possible blunder, procedural failure, or other quality control problem. Usually, 
if y + 3uc(y) < 0, the result should be considered invalid, although the accuracy of the uncertainty 
estimate uc(y) must be considered, especially in cases where only few counts are observed during 
the measurement and counting uncertainty is the dominant component of uc(y). (See Chapter 18, 
Laboratory Quality Control, and Attachment 19D of this chapter.) 

19.3.9  Recommendations 

MARLAP makes the following recommendations to radioanalytical laboratories. 

� All radioanalytical laboratories should adopt the terminology and methods of the Guide to 
the Expression of Uncertainty in Measurement (ISO, 1995) for evaluating and reporting 
measurement uncertainty. 

� The laboratory should follow QC procedures that ensure the measurement process 
remains in a state of statistical control, which is a prerequisite for uncertainty evaluation. 

� Uncertainty estimates should account for both random and systematic effects in the meas-
urement process, but they should not account for possible blunders or other spurious 
errors. Spurious errors indicate a loss of statistical control of the process. 
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Measurement Uncertainty 

� The laboratory should report each measured value with either its combined standard 
uncertainty or its expanded uncertainty. 

� The reported measurement uncertainties should be clearly explained. In particular, when 
an expanded uncertainty is reported, the coverage factor should be stated, and, if possible, 
the approximate coverage probability should also be given. 

� A laboratory should consider all possible sources of measurement uncertainty and eval-
uate and propagate the uncertainties from all sources believed to be potentially significant 
in the final result. 

� Each uncertainty should be rounded to either one or two significant figures, and the 
measured value should be rounded to the same number of decimal places as its uncer-
tainty. (MARLAP prefers the use of two figures in the uncertainty.) Only final results 
should be rounded in this manner. 

� The laboratory should report all results, whether positive, negative, or zero, as obtained, 
together with their uncertainties. 

MARLAP makes no recommendations regarding the presentation of radioanalytical data by the 
laboratory�s clients or other end users of the data. 

19.4 Procedures for Evaluating Uncertainty 

The usual steps for evaluating and reporting the uncertainty of a measurement may be sum-
marized as follows (adapted from Chapter 8 of the GUM): 

1. Identify the measurand, Y, and all the input quantities, Xi, for the mathematical model. 
Include all quantities whose variability or uncertainty could have a potentially significant 
effect on the result. Express the mathematical relationship, Y = f(X1,X2,�,XN), between 
the measurand and the input quantities. 

2. Determine an estimate, xi, of the value of each input quantity, Xi  (an �input estimate,� as 
defined in Section 19.3.2). 

3. Evaluate the standard uncertainty, u(xi), for each input estimate, xi , using either a Type A 
or Type B method of evaluation (see Section 19.3.3). 

4. Evaluate the covariances, u(xi,xj), for all pairs of input estimates with potentially signifi-
cant correlations. 
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Measurement Uncertainty 

5. Calculate the estimate, y, of the measurand from the relationship y = f(x1,x2,�,xN), where 
f is the function determined in Step 1. 

6. Determine the combined standard uncertainty, uc(y), of the estimate, y (see Section 
19.3.3). 

7. Optionally multiply uc(y) by a coverage factor k to obtain the expanded uncertainty U 
such that the interval [y ! U, y + U] can be expected to contain the value of the measur-
and with a specified probability (see Section 19.3.6 and Attachment 19D). 

8. Report the result as y ± U with the unit of measurement, and, at a minimum, state the 
coverage factor used to compute U and the estimated coverage probability. Alternatively, 
report the result, y, and its combined standard uncertainty, uc(y), with the unit of 
measurement. 

19.4.1  Identifying Sources of Uncertainty 

The procedure for assessing the uncertainty of a measurement begins with listing all conceivable 
sources of uncertainty in the measurement process. Even if a mathematical model has been iden-
tified, further thought may lead to the inclusion of more quantities in the model. Some sources of 
uncertainty will be more significant than others, but all should be listed. 

After all conceivable sources of uncertainty are listed, they should be categorized as either poten-
tially significant or negligible. Each uncertainty that is potentially significant should be evaluated 
quantitatively. The following sources of uncertainty may not always be significant but should at 
least be considered: 

� radiation counting 
� instrument calibration (e.g., counting efficiency) 
� tracers, carriers, or other methods of yield measurement 
� variable instrument backgrounds 
� variable counting efficiency (e.g., due to the instrument or to source geometry and 

placement) 
� contamination of reagents and tracers 
� interferences, such as crosstalk and spillover 
� baseline determination (gamma-ray spectrometry) 
� laboratory subsampling 

Other sources of uncertainty include: 

� volume and mass measurements 
� determination of counting time and correction for dead time 
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Measurement Uncertainty 

� time measurements used in decay and ingrowth calculations 
� approximation errors in simplified mathematical models 
� published values for half-lives and radiation emission probabilities 

NOTE: MARLAP does not recommend that laboratories expend tremendous effort on the evalu-
ation of small components of uncertainty when much larger components are known to dominate 
the combined standard uncertainty of the result. However, this chapter does provide guidance in 
several places on the evaluation of very small uncertainties. Such examples may be instructive 
even if the uncertainties are negligible, because they illustrate either important concepts or pos-
sible methods of uncertainty evaluation. Furthermore, an uncertainty component that is negligible 
in one context (e.g., pipetting uncertainty in the context of measuring the activity of a 
radionuclide in a soil sample) may be considered significant in another (e.g., quality control of 
measuring instruments). It is also true that a very large number of small uncertainties may be 
significant when combined. 

19.4.2  Evaluation of Standard Uncertainties 

Calculating the combined standard uncertainty of an output estimate y = f(x1,x2,�,xN) requires 
the evaluation of the standard uncertainty of each input estimate, xi. As stated earlier, methods for 
evaluating standard uncertainties are classified as either �Type A� or �Type B.� A Type A eval-
uation of an uncertainty uses a series of measurements to estimate the standard deviation empiri-
cally. Any other method of evaluating an uncertainty is a Type B method. 

In general, the standard uncertainty of an input estimate, xi, is an estimated standard deviation for 
the estimator whose value is used for xi. The appropriate methods for estimating this standard 
deviation depend on how the value of the input estimate is obtained. 

19.4.2.1  Type A Evaluations 

Suppose Xi is an input quantity in the mathematical model. If a series of n independent observa-
tions of Xi are made under the same measurement conditions, yielding the results Xi,1, Xi,2, ..., Xi,n, 
the appropriate value for the input estimate xi is the arithmetic mean, or average, Xi , defined as 

X i ' 1 j 
n 

Xi,k (19.1) 
n k'1 

The experimental variance of the observed values is defined as 

n 
s 2(Xi,k) ' 1 (Xi,k & X i)

2 (19.2) 
n & 1 k

j
'1 
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and the experimental standard deviation, s(Xi, k), is the square root of s2(Xi, k). The experimental 
standard deviation of the mean, s(Xi ), is obtained by dividing s(Xi, k) by n .6 

s(Xi,k) s(Xi) ' (19.3) 
n 

The experimental standard deviation of the mean is also commonly called the �standard error of 
the mean.� 

The Type A standard uncertainty of the input estimate xi = Xi  is defined to be the experimental 
standard deviation of the mean. Combining the preceding formulas gives the following equation 
for the standard uncertainty of xi : 

1 n 
(Xi,k & X i)

2 (19.4) u(xi) ' 
n (n & 1) k

j
'1 

When the input estimate xi and standard uncertainty u(xi) are evaluated as described above, the 
number of degrees of freedom for the evaluation is equal to n ! 1, or one less than the number of 
independent measurements of the quantity Xi . In general, the number of degrees of freedom for a 
statistical determination of a set of quantities equals the number of independent observations 
minus the number of quantities estimated. The number of degrees of freedom for each evaluation 
of standard uncertainty is needed to implement the procedure for calculating coverage factors 
described in Attachment 19D. 

EXAMPLE 19.1  Ten independent measurements of a quantity Xi are made, yielding the values 

12.132  12.139  12.128  12.133  12.132 
12.135  12.130  12.129  12.134  12.136 

The estimated value xi is the arithmetic mean of the values Xi,k . 

1 n 121.328 xi ' Xi ' j Xi,k ' ' 12.1328 
n k'1 10 

6 The experimental standard deviation of the mean, s(Xi) , may be used as the standard uncertainty of the average, 
Xi , even if the individual observations Xi,k are obtained under different conditions of measurement, so long as all 
pairs of distinct observations, Xi,k and Xi,l, can be considered to be uncorrelated. However, in these circumstances, it 
is sometimes better to define the input estimate, xi, to be a weighted average of the observations. 

Measurement Uncertainty 
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The standard uncertainty of xi is 

1 n 
(Xi,k & Xi)

2 u(xi) ' s(Xi) ' 
n (n&1) k

j
'1 

1 10 
' (Xi,k & 12.1328)2 

10  (10�1)  kj'1 

' 1.12889 × 10&6 ' 0.0011 

 

 

  
  

  

 

 

 
 

  

Measurement Uncertainty 

USE OF HISTORICAL DATA 

In some cases there may be accumulated data for a measurement system, such as a balance or 
pipet, which can be used in a Type A evaluation of uncertainty for future measurements, 
assuming the measurement process remains in control. In fact the use of recent historical data is 
advisable in such cases, because it enlarges the pool of data available for uncertainty evaluation 
and increases the number of degrees of freedom. This type of uncertainty evaluation can be 
linked closely to the measurement system�s routine quality control. 

One may pool recent historical data with current measurement data, or one may evaluate an 
uncertainty based on historical data alone. The appropriate expression for the standard uncer-
tainty depends on how the data are used to calculate the input estimate, xi, and on whether xi is 
used to estimate the value of a parameter or to predict the value of a variable. An example of 
estimating the value of a parameter is measuring the mass of material in a container using an 
analytical balance. An example of predicting the value of a variable is calibrating a pipet, since 
the actual volumes dispensed by the pipet in subsequent measurements vary and are seldom 
measured directly. 

Attachment 19E provides descriptions and examples of the use of historical data for Type A eval-
uations of uncertainty in mass and volume measurements. 

EVALUATION OF COVARIANCE 

If Xi and Xj are two input quantities and estimates of their values are correlated, a Type A evalua-
tion of covariance may be performed by making n independent pairs of simultaneous observa-
tions of Xi and Xj and calculating the experimental covariance of the means. If the observed pairs 
are (Xi,1, Xj,1), (Xi,2, Xj,2), �, (Xi,n, Xj,n), the experimental covariance of the values is 
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1 n 
s(Xi,k,Xj,k) ' (Xi,k & X i) (Xj,k & Xj) (19.5) 

n & 1 k
j
'1 

and the experimental covariance of the means Xi and  Xj is 

s(Xi,k,Xj,k) s(Xi,X j) ' (19.6) 
n 

So, the Type A covariance of the input estimates xi = Xi  and xj = Xj  is 

u(xi,xj) �� s(X i,Xj) �� 1 n 
(Xi,k � Xi) (Xj,k � X j) (19.7) 

n (n � 1)  k
j

�1 � 

Measurement Uncertainty 

An evaluation of variances and covariances of quantities determined by  the method of least 
squares may also be a Type A evaluation. 

19.4.2.2  Type B  Evaluations 

There are many ways to perform Type B evaluations of standard uncertainty. This section de-
scribes some common Type B evaluations but is not meant to be exhaustive. 

POISSON COUNTING UNCERTAINTY 

One example of a Type B method already  given is the estimation of counting uncertainty using 
the square root of the observed counts. If the observed count is N, when the Poisson approxima-
tion is used, the standard uncertainty of N may be evaluated as u(N) = N . When N may be very 
small or even zero, MARLAP  recommends the use of the equation u(N) = N % 1  instead (see 
Attachment 19D). 

EXAMPLE 19.2  A Poisson counting  measurement is performed, during which N = 121 counts 
are observed. So, the standard uncertainty of N is u(N) = 121  = 11. 

RECTANGULAR  DISTRIBUTION 

Sometimes a Type B evaluation of an uncertainty  u(x) consists of estimating  an upper bound a 
for the magnitude of the error of x based on professional judgment and the best available infor-
mation. If nothing  else is known about the distribution of the measured result, then after a is esti-
mated, the standard uncertainty may be calculated using the equation 
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u(x) ' (19.8) 
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a 

which is derived from a statistical model in which the error has a rectangular, or uniform, distri-
bution bounded by �a and +a (see Section 19A.6 in Attachment 19A). 

EXAMPLE 19.3  The maximum error of a measured value x = 34.40 is estimated to be a = 0.05, 
with all values between 34.35 and 34.45 considered equally likely. So, the standard uncertainty 
of x is u(x) = 0.05 / 3  = 0.029. 

EXAMPLE 19.4  A strontium carrier solution is prepared by dissolving  strontium nitrate in 
acidified water. The purity, P, of the strontium nitrate is stated to be 99.9 %, or 0.999, but no 
tolerance or uncertainty is provided. By default, a rectangular distribution with half-width 
1 !  P, or 0.001, is assumed. So, the standard uncertainty of P is evaluated as u(P) = 
0.001 / 3  = 0.00058. 

TRAPEZOIDAL  DISTRIBUTION 

It may also happen that one can estimate an upper bound, a, for the magnitude of the error so that 
the input quantity is believed with near certainty to lie between x  !  a and x + a, but one believes 
that values near x are more likely than those near the extremes, x ± a. In this case, a symmetric 
trapezoidal distribution may be used to obtain the standard uncertainty of x. The trapezoidal dis-
tribution is named for the fact that the graph of its pdf has the shape of a trapezoid (see Section 
19A.7 in Attachment 19A). To use the trapezoidal  model, one determines  the value a, which rep-
resents the maximum possible error of the input estimate, and another value, β, which describes 
the fraction of possible values about the input estimate that are considered most likely 
(0 < β < 1). Then the standard uncertainty of x is given by the following  expression. 

1 % β2 
(19.9) u(x) ' a 

6 

As β approaches zero, the trapezoidal distribution becomes triangular, and the standard uncer-
tainty of  x approaches a / 6 . As β approaches one, the trapezoidal distribution becomes rectan-
gular, and the standard uncertainty of x approaches a / 3 . 
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 EXAMPLE 19.5  Extreme bounds for a quantity X are estimated to be 34.3 and 34.5, with val-
ues between 34.35 and 34.45 considered most likely. Using the trapezoidal model, one obtains 
the input estimate 

34.3 % 34.5 x ' 
2 

the half-width 

a ' 
34.5 & 34.3 

2 
' 0.1 

and the fraction 

β ' 
34.45 & 34.35 
34.5 & 34.3 

' 
0.1 
0.2 

' 0.5 

Then the standard uncertainty of x is calculated as follows. 

u(x) ' a 1 % β2 

6 
' 0.1 1 % 0.52 

6 
' 0.046 

Measurement Uncertainty 

EXAMPLE 19.6  The manufacturer of a 100-milliliter volumetric flask specifies that the 
capacity tolerance is 0.08 mL. The user of the flask assumes the tolerance represents the half-
width of a triangular distribution and evaluates the standard uncertainty of the capacity to be 
0.08 / 6  = 0.033 mL. (See Section 19.5.10 and Attachment 19E for more information about 
the uncertainty of a volume measurement.) 

IMPORTED VALUES 

When the estimate of an input quantity is taken from an external source, such as a book or a cali-
bration certificate, which states the uncertainty as a multiple of the standard deviation s, the stan-
dard uncertainty is obtained by dividing  the stated uncertainty by the stated multiplier of  s. 

EXAMPLE 19.7  The uncertainty for a measured activity concentration, cA, is stated to be 0.015 
Bq/L and the stated multiplier is 2. So, the standard uncertainty of  cA is u(cA) = 0.015 / 2 = 
0.0075 Bq/L. 

If the estimate is provided  by  a source which  gives a bound c for the error such that the interval 
from  x  !  c to x + c contains the true value with 100γ  % confidence (0 < γ < 1) but no other infor-
mation about the distribution is  given, the measured result may be assumed to have a normal dis-
tribution, and the standard uncertainty may therefore be evaluated as 

MARLAP 19-18 JULY 2004 



 

 

 

 

 

 

Measurement Uncertainty 

c u(x) ' (19.10) z(1%γ) /2  

The value of z(1 + γ) / 2 may be found in a table of quantiles of the standard normal distribution (see 
Table G.1 in Appendix G). 

EXAMPLE 19.8  The specific activity, x, of a commercial standard solution is stated to lie 
within the interval (4530 ± 64) Bq/g with 95 % confidence. The standard uncertainty may 
therefore be evaluated as u(x) = 64 / z0.975 = 64 / 1.96 = 33 Bq/g. 

EVALUATION OF COVARIANCE 

Evaluation of the covariance of two input estimates, xi and xj, whose uncertainties are evaluated 
by Type B methods may require expert judgment. Generally, in such cases it is simpler to esti-
mate the correlation coefficient, r(xi,xj), first and then multiply it by the standard uncertainties, 
u(xi) and u(xj) to obtain the covariance, u(xi,xj). The correlation coefficient must be a number 
between !1 and +1. A correlation coefficient of zero indicates no correlation between the esti-
mates, while a value of ±1 indicates the strongest possible correlation. Usually, if the two input 
estimates have a significant correlation, it is easy to guess the sign of the correlation coefficient, 
but estimating its magnitude may require knowledge and experience. 

If the input estimates are imported values (e.g., from a published reference), the only practical 
method of evaluating their covariance is to use the correlation coefficient, if any, provided with 
the estimates. When no correlation coefficient is stated, the input estimates must be assumed to 
be uncorrelated. 

In many cases when a correlation between two input estimates is suspected, the reason for the 
suspicion is that identifiable random or systematic effects in the measurement process are known 
to affect both estimates. It may be possible in such cases to include additional explicit variables 
in the mathematical model to account for those effects, eliminating the need for Type B covar-
iance evaluations. 

Sometimes two input estimates for one measurement model are explicitly calculated from other 
measured values. Section 19.4.4 shows how one may evaluate the covariance for two such calcu-
lated values. 
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19.4.3  Combined Standard Uncertainty 

19.4.3.1  Uncertainty Propagation Formula 

Consider the mathematical  model Y = f(X1,X2,�,XN). If  x1, x2, �, xN are measured values of the 
input quantities, Xi, and y = f(x1,x2,�,xN) is the calculated value of the output quantity,  Y, the 
combined standard uncertainty of y is obtained using  the following  formula. 

Uncertainty Propagation Formula 

Here u2(xi) denotes the estimated variance of xi , or the square of its standard uncertainty; u(xi,xj) 
denotes the estimated covariance of xi and xj ; Mf / Mxi (or My / Mxi) denotes the partial derivative  of 
f with respect to Xi evaluated at the measured values x1, x2, �,  xN ; and u2

c(y) denotes the combined 
variance of y, whose positive square root, uc(y), is the combined standard uncertainty of y. The 
partial derivatives, Mf / Mxi, are called sensitivity coefficients. 

The preceding  formula, called the �law of propagation of uncertainty� in the GUM, will be called 
the �uncertainty propagation formula� or the �first-order uncertainty propagation formula� in this 
document. Equation 19.11 is commonly used to define the combined standard uncertainty, but 
note that the combined standard uncertainty is only an approximation of the true standard devia-
tion of the output estimate, and sometimes other definitions provide better approximations (e.g., 
see Section 19.4.5.1).7 

Table 19.1 shows several rules for partial differentiation, which tend to be useful when one cal-
culates the sensitivity coefficients in the uncertainty propagation formula. Table 19.2 shows how 
to propagate uncertainties in some common cases. The  expressions for the combined standard 
uncertainties shown in Table 19.2 may be derived from the uncertainty propagation formula 
using the differentiation rules listed in Table 19.1. 

7 The uncertainty propagation formula may  be derived by approximating  the function f by a first-order Taylor 
polynomial. 
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TABLE 19.1 � Differentiation rules 

In the following equations the symbols F and G denote arbitrary expressions, which may contain the variables 
x1,x2,...,xN. The symbol c denotes either a constant expression or any other expression that does not contain the 
variable xi. 

Mc 
Mxi 

' 0 M(F ± G) 
Mxi 

' MF 
Mxi 

± MG 
Mxi 

M(F c) 
Mxi 

' cF c&1 MF 
Mxi 

Mxi 

Mxi 

' 1 M(FG) 
Mxi 

' MF G % F MG 
Mxi Mxi 

M(eF) 
Mxi 

F MF 
' e

Mxi 

Mxj 

Mxi 

' 0, if i … j M(F / G) 
Mxi 

' 
(MF / Mxi)G & F (MG / Mxi) 

G 2 

M(ln F) 
Mxi 

' 
MF / Mxi 

F 

M(cF) 
Mxi 

' c MF 
Mxi 

M(1 / F) 
Mxi 

' 
&MF / Mxi 

F 2 

M(log10 F) 
Mxi 

' 
MF / Mxi 

(ln 10)F 

TABLE 19.2 � Applications of the first-order uncertainty propagation formula 

SUMS AND 
DIFFERENCES 

If a and b are constants, then 
2 u (ax ± by) ' a 2u 2(x) % b 2u 2(y) ± 2ab @ u(x,y) c 

PRODUCTS If x and y are measured values, then 
2 u (xy) ' u 2(x)y 2 % x 2u 2(y) % 2xy @ u(x,y) c 

When x and y are nonzero, the formula may be rewritten as 
2 u 2(x) 

% u 2(y) 
% 2u(x,y) u (xy) ' x 2y 2 

c 
x 2 y 2 xy 

QUOTIENTS If x and y are measured values, then 
2 x 

' u 2(x) 
% x 2u 2(y) 

& 2x @ u(x,y) u c y y 2 y 4 y 3 

When x is nonzero, the variance formula may be rewritten as 
2 x 

' x 2 u 2(x) 
% u 2(y) 

& 2u(x,y) u c y y 2 x 2 y 2 xy 

EXPONENTIALS If a is a constant, then 
2 2ax u 2(x) u (eax ) ' a 2 ec 

If n is a positive integral constant, then 
2 u (x n ) ' n 2 x 2n & 2 u 2(x) c 

LOGARITHMS If a is a constant and ax is positive, then 
2 2 u 2(x) u 2(x) u (ln ax) ' u 2(x) and u (log10 ax) ' . c c 

x 2 (ln 10)2 x 2 (5.302)x 2 
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Mq 
' 

1 M2q M3q 
' 0 ' 0 

Mx y Mx 2 Mx 3 

Mq M2q 
' 2x M3q 

' &  x 
' &

6x 
My y 2 My 2 y 3 My 3 y 4 

M2q M3q 2 M3q 
' &  

1 
' ' 0 

Mx My y 2 Mx My 2 y 3 My Mx 2 

1 
& 

1 2 1 2 2(q) ' 
u 2(x) 

% q 2 u 2(y) u 2(x) u 2(y) 
y 2 y 2 

uc % 0 ×  u 4(x) % % 
2 y 2 y y 3 

1 
& 1 2 1 4x 2 

&
6x 

& x u 4(y) 
2 

u 2(y) u 2(x) % % % 0 % 
y 2 y 6 y 2 y 4 

' 
u 2(x) 

2 

% q 2 u 2(y) 1 % 3 u 2(y) 1 % 8 u 2(y) 
y 2 y 2 y 2 y 2 

With numbers, 

0.52 
1 % 3 32 32 

1 % 8 32 
uc(q) ' % 0.52 ' 0.205 

102 102 102 102 

In this case, since 0.205 is substantially larger than 0.158, the first-order formula is inadequate. 

If the standard uncertainty of y is much larger than 3 (in this case 30 % in relative terms), even 
the higher-order formula begins to fail here. 

19.4.5.2  Bias due to Nonlinearity 

As noted earlier, when the measurement model has the form Y = f(X1,X2,�,XN) and the input 
estimates are x1, x2, �, xN, the output estimate is given by y = f(x1,x2,�,xN). If the function, f, is 
nonlinear, the output estimate, y, may be a biased estimate of the value of the output quantity, Y, 
even if the model is correct and each of the input estimates, xi, is an unbiased estimate of the 
associated input quantity (Ku, 1966). 

For example, if the model is Y ' f(X) ' X 2  and X is an unbiased estimator for some quantity θ, 
then Y ' X 2  is a biased estimator for the quantity θ2 . (I.e., the mean of the square is not equal to 
the square of the mean.) Since the variance of X is V(X) ' E(X 2) & E(X)2  and the mean of X is 
E(X) = θ, the mean of Y in this case is given by 
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E(Y) ' E(X 2) ' E(X)2 % V(X) ' θ2 % V(X) (19.20) 

So, the bias of Y ' X 2  as an estimator for θ2  is equal to the variance of X. In metrology the true 
variance of the estimator X is unknown of course, but the bias of an output estimate, y = x2, can 
be estimated by u2(x), the square of the standard uncertainty of the input estimate, x. 

More generally, the portion of the bias of y associated with the nonlinearity of the model may be 
estimated, if necessary, by the formula 

1 N N M2f Bias(y) . 
2 j j u(xi,xj) (19.21) 

i'1 j'1 Mxi Mxj 

In practice, Equation 19.21 is equivalent to the following (Ku, 1966). 

N N&1 N 1 M2f M2f Bias(y) . 
2 j 2 

u 2(xi) % j j u(xi,xj) (19.22) 
i'1 Mx i'1 j' i%1 Mxi Mxj i 

This bias is usually negligible in comparison to the combined standard uncertainty, uc(y), if the 
relative standard uncertainty of each input estimate is small. (These equations are based on an 
approximation of the function f by a second-order Taylor polynomial.) 

Note that the bias calculated by Equations 19.21 and 19.22 may not represent the overall bias of 
the output estimate. It represents only the bias associated with nonlinearity of the mathematical 
model. If the input estimates are biased or the model is inexact, the overall bias may be different. 

MARLAP does not recommend correcting the output estimate for the estimated bias due to non-
linearity. Instead, the standard uncertainties of the input estimates should be kept small enough to 
make this portion of the bias negligible. For a typical radiochemical measurement model 
involving a net count rate divided by a denominator consisting of a product of factors such as the 
counting efficiency, test portion size, and chemical yield, this requirement means keeping the 
uncertainties of the counting times and all the factors in the denominator relatively small. The 
relative uncertainties of the raw counts may be large. 
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EXAMPLE 19.13  If x is an estimate of a positive quantity X, the bias of y = 1 / x as an estimate 
of 1 / X may be approximated using Equation 19.22. Since y is a function of only one variable, 
the partial derivatives of y are the same as ordinary derivatives. The first derivative is dy / dx = 
!x!2 and the second derivative is d2y / dx2 = 2x!3. So, the bias due to nonlinearity can be esti-
mated as Bias(y) . (1 /2) (2x!3)u2(x) = u2(x) /  x3. 

Suppose x = 1.2 and its standard uncertainty is 0.2. Then the calculated value of y is 1 / 1.2, or 
0.833, and the estimated bias of y due to nonlinearity is 0.22 / 1.23 = 0.023. 

EXAMPLE 19.14  If x and y are uncorrelated, unbiased estimates of quantities X and Y, respec-
tively, the bias of the product z = xy as an estimate of XY is given approximately by 

1 M2z u 2(x) % M
2z u 2(y) Bias(z) . 

2 Mx 2 My 2 

which equals zero, since M2z / Mx 2 ' M2z / My 2 ' 0 . (In this case, it can be shown that the bias of 
z is exactly zero, not just approximately zero.) 

EXAMPLE 19.15  If t is an estimate of the decay time T for a radionuclide whose decay con-
stant is λ (assumed to have negligible uncertainty), the bias of the estimated decay factor D = 
e!λt is given approximately by 

1 M2D 1 Bias(D) . u 2(t) ' λ2e&λ t u 2(t) 
2 Mt 2 2 

and the relative bias is λ2 u2(t) / 2. For example, suppose the radionuclide is 228Ac, which has a 
half-life of T1/2 = 6.15 h, and the decay time has a standard uncertainty of u(t) = 2 h (large for 
the sake of illustration). Then the decay constant λ equals ln(2) / 6.15 = 0.112707 h!1. The bias 
equation above implies that the relative bias of the decay factor D due to the uncertainty of t is 
approximately 

Bias(D) 1 1 . λ2u 2(t) ' (0.112707)2 (2)2 ' 0.025 
D 2 2 

or 2.5 %. Note that the relative bias of D is small if u 2(t) /  T 2  is small. (In this example, 
T 2 1/2 

u2(t) / 1/2  = 22 / 6.152 = 0.1058.) 

Measurement Uncertainty 

JULY 2004 19-33 MARLAP 



 

 

 

 

 
 

 

 

 

 

Measurement Uncertainty 

19.4.6  Monte Carlo Methods 

An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to 
propagate not the uncertainties of input estimates but their distributions. Given assumed distribu-
tions for the input estimates, the method provides an approximate distribution for the output esti-
mate, from which the combined standard uncertainty or an uncertainty interval may be derived. 
The joint working group responsible for the GUM is reported to be developing new guidance on 
the use of such methods. Monte Carlo methods may be particularly useful when the distribution 
of the result is not approximately normal. However, these methods are most effective when the 
model can be formulated in terms of independent input estimates. 

19.5 Radiation Measurement Uncertainty 

19.5.1  Radioactive Decay 

Although it is impossible to know when an unstable nucleus will decay, it is possible to calculate 
the probability of decay during a specified time interval. The lifetime of the nucleus has an 
exponential distribution, which is a model for the life of any object whose expected remaining 
life does not change with age. 

The exponential distribution is described by one parameter λ, which measures the expected frac-
tional decay rate. This parameter λ is called the decay constant and equals ln(2) / T1/2 , or approx-
imately 0.693 / T1/2 , where T1/2 is the half-life of the radionuclide (sometimes denoted by t1/2). The 
half-life is the same as the median of the exponential distribution. 

The probability that an atom will survive until time t without decaying is equal to e!λt. Thus the 
probability of survival decreases exponentially with time. Consequently, when a large number of 
atoms of the same radionuclide are considered, the expected number of surviving atoms also 
decreases exponentially with time, as shown in Figure 19.2. 

Since the probability that an atom survives until time t is equal to e!λt, it follows that the proba-
bility of decay during this time is 1 ! e!λt . 
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FIGURE 19.2 � Expected fraction of atoms remaining at time t 

19.5.2  Radiation Counting 

Undoubtedly the best-known rule of radiation measurement statistics is the fact that the counting 
uncertainty for a gross radiation measurement can be evaluated as the square root of the observed 
counts. The square-root rule is useful, because it permits the estimation of a potentially 
significant uncertainty component without replicate measurements. Although the rule is usually 
valid as an approximation, for reasons which are discussed below, there are limits to its applica-
bility. It is also important to remember that the counting uncertainty is only one component of the 
total measurement uncertainty. 

19.5.2.1  Binomial Model 

When a source containing a radionuclide is placed in a detector, the probability that a particular 
atom of the radionuclide will produce a count is the product of three factors: the probability of 
decay, the probability of emission of the radiation being measured, and the probability of 
detection. According to the exponential decay model, the probability of decay is equal to 

&λtS 1 & e , where λ is the decay constant and tS is the counting time. The probability of radiation 
emission, denoted here by F, is a characteristic of the radionuclide. The probability of detection 
is the counting efficiency, g. Then the probability that an atom will generate a count is p = 

&λtS) (1 & e Fg. 

If the source initially contains n atoms of the radionuclide, the instrument is stable, and its back-
ground is negligible, the number of observed counts N has a binomial distribution with parame-
ters n and p. In general, if an experiment has only two possible outcomes, which may be called 
�success� and �failure,� and the probability of success is p, then the number of successes ob-
served when the experiment is repeated in n independent trials has a binomial distribution with 
parameters n and p. 
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Actually the probability  p is a random variable, because the counting efficiency for an instrument 
and source can vary for a number of reasons, such as source placement, dead time and other 
instrument characteristics. These variations generate  measurement uncertainty, but their  effects 
are not included in the �counting uncertainty.� The counting uncertainty is the standard deviation 
of the theoretical distribution of counts observed in a fixed time period when the efficiency is 
held constant. Thus, the actual variability observed in repeated measurements of a single radio-
active source may be greater than the theoretical counting uncertainty. 

19.5.2.2  Poisson Approximation 

The mean and variance of the binomial distribution are np and np(1 !  p), respectively. In radia-
tion counting, the value of p is usually small enough that the factor 1 !  p in the variance can be 
ignored (i.e., treated as 1). When this is true, the binomial distribution can be approximated  by  a 
Poisson distribution with mean  µ = np. The variance of a Poisson distribution equals the mean; 
so, both can be estimated  by  the same measured result N, and the standard deviation can be esti-
mated by  N . 10 

When  µ is large, N  is an excellent estimator for the standard deviation, σN, but the estimate may 
be poor when µ is small. For example, if µ = 100, the coefficient of variation of N  is only about 
5 % and its bias (caused by the nonlinearity of the square-root function) is negligible.11 If  µ = 10, 
the coefficient of variation is more than 16 % and there is a negative bias of more than 1 %.  If 
µ = 1, the coefficient of variation is more than 63 % and the negative bias is more than 22 %. 
Furthermore, when µ is small, it is possible to observe zero counts, so that N  = 0. MARLAP 
recommends that N  be replaced by  N % 1  when extremely low counts are possible (see also 
Attachment 19D).12 

10 In the rare cases  when the Poisson model is inadequate and the binomial model is required, if  the instrument 
background level is negligible, the standard deviation  of  the source count NS can be estimated by  (1 � p)NS . If the 
background is not negligible, the variance of  NS is the sum of components contributed by the background and the 
source. So, if a Poisson background is measured for time tB and NB counts are observed, the background 
contribution to NS is estimated by  NBtS / tB, and the source contribution is estimated  by  (NS  !  NBtS / tB). Then the 
standard deviation of  NS may be estimated  by  combining the estimated variances  of these  two contributions, as 
shown below. 

These expressions  for the  standard deviation of  NS are appropriate only  when the source counts are generated by a 
single radionuclide or by one radionuclide plus the instrument background. 

11  The coefficient of  variation  of  a nonnegative random variable is defined as the ratio  of  its standard  deviation to 
its mean (see Attachment 19A). 

12 The negative bias of  N  as an estimator for σ %N is largely eliminated if one replaces it by  N  0.25 . MARLAP 
recommends the estimator N % 1  although it is positively  biased. 
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A sum of independent Poisson quantities also has a Poisson distribution. So, when the Poisson 
approximation is valid for all the sources of counts in a counting measurement, the total count 
obeys Poisson counting statistics as well. 

If a short-lived radionuclide (large λ) is counted in a high-efficiency detector (large g), the prob-
ability p that an atom placed in the detector will produce a count may be so large that the Poisson 
approximation is invalid. In this case the Poisson approximation overestimates the counting un-
certainty; however, it is important to consider that the statistical model described thus far repre-
sents only the process of counting. In most cases previous steps in the measurement process 
decrease the probability that one of the atoms of interest initially present in the test portion (the 
portion of sample taken for analysis) will produce a count. If a correction for decay before count-
ing is performed, the decay factor must be included in p. If the measured activity of a (single) 
decay product is used to estimate the activity of a parent, p must include both ingrowth and decay 
factors. If a chemical extraction is performed, the recovery factor must be considered. When 
these factors are included, the Poisson model is usually valid. Note, however, that these factors 
must be measured and their standard uncertainties evaluated and propagated, increasing the total 
measurement uncertainty even further.13 

Both the binomial and Poisson models may be invalid if one atom can produce more than one 
count during the measurement. This situation occurs when the activity of a parent is estimated 
from the total count produced by the parent and a series of short-lived progeny (Lucas and 
Woodward, 1964; Collé and Kishore, 1997). For example when 222Rn is measured by counting 
the emissions of the parent and its progeny, an atom of 222Rn may produce several counts as it 
decays through the short-lived series 218Po, 214Pb, 214Bi and 214Po, to the longer-lived 210Pb. 
Another example is the measurement of 234Th by beta-counting a source that contains 234Th and 
its short-lived progeny, 234mPa. 

Both counting models may also be invalid if the total dead time of the measurement is significant 
(see Section 19.5.3.1). 

Instrument background measurements are usually assumed to follow the Poisson model. This 
assumption is reasonable if the background counts are produced by low levels of relatively long-
lived radionuclides. However, the true background may vary between measurements (e.g., cos-
mic background). Furthermore, the measured background may include spurious instrument-
generated counts, which do not follow a Poisson distribution. Generally, the variance of the ob-
served background is somewhat greater than the Poisson counting variance, although it may be 

13 It is possible to evaluate the uncertainties associated with the decay and ingrowth of a small number of short-lived 
atoms before counting using the binomial model, but under the stated conditions, the assumption of Poisson 
counting statistics simplifies the calculation. A more complete evaluation of uncertainty may be necessary if the 
same source is counted more than once. 
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The uncertainty of t may be ignored if u(t) / t << 1 / N , that is, if the relative standard uncer-
tainty of t is much less than 1 over the square root of the count. 

EXAMPLE 19.16  A source is counted for t = 100 s, where t has standard uncertainty u(t) = 
0.1 s, and N = 25 counts are observed. Thus, the observed count rate, R, equals 0.250 s!1. 
When u(t) is ignored, the combined standard uncertainty of R is uc(R) = N / t 2  = 0.050 s!1. 
When u(t) is included, the combined standard uncertainty is 

uc(R) ' N 
t 2 

% N 2 

t 4 
u 2(t) ' 25 

1002 
% 252 

1004 
0.12 . 0.050 s&1 

In this case the difference between the two uncertainty estimates is negligible. 

EXAMPLE 19.17  A source is counted for t = 100 s, where u(t) = 1 s, and N = 10,609 counts are 
observed. The count rate, R, equals N / t, or 106.09 s!1. When u(t) is ignored, uc(R) = N / t 2  = 
1.03 s!1. When u(t) is included, 

N 
% 

N 2 
u 2(R) ' u 2(t) (19.23) 

t 2 t 4 

Measurement Uncertainty 

less for certain types of instruments, such as those that  use parallel coincidence counters to com-
pensate for background instability (Currie et al., 1998). Departures from the Poisson model  may 
be detected using  the chi-squared test described in Section 18B.2 of Attachment 18B; however, 
deviations from the model over short time periods may be small and difficult to measure. 

19.5.3  Count Time and Count Rate 

Suppose a radiation counting measurement of duration t is made for the purpose of estimating  a 
mean count rate r, assumed to be constant, and the result of the measurement (in counts) has a 
distribution that is approximately Poisson with mean rt. If  t is known precisely, the best estimate 
of r given a single observation, N, is the measured count rate R = N / t, and the best estimate of 
the variance of the measured rate is  u2(R) = N / t2 = R / t. Under the Poisson assumption, even if 
repeated measurements are made, the best estimates of the count rate and its variance are ob-
tained by pooling  the counts and count times and using the same formulas. 

In fact, the count time t is known imperfectly; so a more complete estimate of the variance of R is 
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N 
% N 2 10,609 

% 10,6092 
u 2(t) ' uc(R) ' 12 . 1.48 s &1 

t 2 t 4 1002 1004 

In this example the two uncertainty estimates are clearly different, although both are relatively 
small (1 % to 1.4 %). 

Measurement Uncertainty 

Sometimes a radiation counter is set to acquire a predetermined number of counts. In this case 
the number of counts is a constant and only the count time varies. If the mean count rate does not 
change appreciably during the measurement, then Equation 19.23 may still be used.14 

19.5.3.1  Dead Time 

The dead time for a counting instrument is the minimum separation, τ, between two events re-
quired for the instrument to process and record both. Theoretical models for dead time are gen-
erally of two types. If the dead time for one event may be extended by a second event that arrives 
before the first has been processed, the system is called �paralyzable� and the dead time is called 
�extendable.� Otherwise, the system is called �non-paralyzable� and the dead time is called �non-
extendable� (Knoll, 1989; Turner, 1995; NCRP, 1985). Both models are idealized. The behavior 
of an actual counting  system tends to fall between the two extremes. At low count rates, 
however, both models give essentially the same predictions. 

At low count rates the observed count rate, N / t, may be corrected for dead time by dividing by 
the factor 1 !  Nτ / t. Many counting  instruments perform the correction automatically by  ex-
tending the real  time t of the measurement to achieve a desired live time, tL. Since tL = t  !  Nτ, the 
corrected count rate is simply  N / tL. When the dead time rate for the measurement is low, the 
variance of the corrected count rate may be estimated as N / t 2

L . Thus, the Poisson model remains 
adequate if the �count time� is equated with the live time. When the dead time rate is high (above 
20 %), the same estimate may not be adequate (NCRP, 1985). In this case the measurement 
should be repeated, if possible, in a manner that reduces the dead time rate. 

Dead time effects may be evaluated experimentally to confirm that  they do not invalidate the 
Poisson model at the count rates expected for  typical measurements. The chi-squared test de-
scribed in Section 18B.2 of Attachment 18B  can be used for this purpose. 

14 If the mean count rate, r, is constant, the waiting  times between events are independent exponentially distributed 
random variables with parameter λ = r. Therefore, the total time required to obtain n counts is the sum of the n 
waiting  times, which has a gamma distribution with parameters  α = n and λ = r (or α = n and β = 1/λ = 1/r). 
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Here γ is the desired confidence coefficient, or the minimum probability of coverage, and for any 
ν, χp 

2(ν) denotes the p-quantile of the chi-squared distribution with ν degrees of freedom (see 
Table G.3 in Appendix G). If ν = 0, the chi-squared distribution χ2(ν) is degenerate. For our 
purposes, χp 

2(0) should be considered to be 0. 

EXAMPLE 19.18  Suppose 10 counts are observed during a 600-second instrument background 
measurement. Then the 95 % confidence limits for the background count rate are 

χ2 
0.025(20) 9.59078 

' ' 0.00799 s &1 rlower ' 
(2)(600) 1200 
χ2 

0.975(22) 36.7807 r ' ' ' 0.03065 s &1 
upper (2)(600) 1200 

EXAMPLE 19.19  Suppose 0 counts are observed during a 600-second measurement. Then the 
95 % confidence limits for the count rate are 

χ2 
0.025(0) 

' 0 s  &1 rlower ' 
(2)(600) 
χ2 

0.975(2) 7.3778 r ' ' ' 0.00615 s &1 
upper (2)(600) 1200 

Measurement Uncertainty 

19.5.3.2  A Confidence Interval for the Count Rate 

When the Poisson model of radiation counting is valid, lower and upper confidence limits for the 
mean count rate r given an observation of N counts in time t may be calculated as follows:15 

2t rlower ' χ2
(1&γ) /2(2N) 

(19.24) 
r ' χ2

(1%γ) /2(2N % 2) 2t upper 

15 The chi-squared distribution is  a  special case of  a gamma distribution, whose relationship to the Poisson distribu-
tion is described by Hoel et al. (1971) and Stapleton (1995). This relationship is the basis for the two formulas in 
Equation 19.24. The relationship is such that  if  X is chi-squared with 2N degrees of freedom and Y is Poisson with 
mean µ, then Pr[X  # 2µ] = Pr[Y  $  N]. 

MARLAP 19-40 JULY 2004 



 

 
  

 

 

 

 

 

Measurement Uncertainty 

19.5.4  Instrument Background 

As noted above, single-channel background measurements are usually assumed to follow the 
Poisson model, although there may be effects which increase the variance beyond what the model 
predicts. For example, cosmic radiation and other natural sources of instrument background may 
vary between measurements, the composition of source holders and containers may vary, the 
instrument may become contaminated by sources, or the instrument may simply be unstable. For 
certain types of instruments, the Poisson model may overestimate the background variance 
(Currie et al., 1998). If the background does not closely follow the Poisson model, its variance 
should be estimated by repeated measurements. 

The �instrument background,� or �instrument blank,� is usually measured with source holders or 
containers in place, since the presence of the container may affect the count rate. In many cases, 
perhaps most, it is not feasible to use the same container during both the background and test 
source measurements, but nearly identical containers should be used. Variations in container 
composition may affect the background count rate. If test sources contain enough mass to atten-
uate background radiation, then it is best to use a similar amount of blank material during the 
background measurement. 

If repeated measurements demonstrate that the background level is stable, then the average, x̄ , of 
the results of many similar measurements performed over a period of time may give the best esti-
mate of the background. In this case, if all measurements have the same duration, the experi-
mental standard deviation of the mean, s(x̄) , is also a good estimate of the measurement uncer-
tainty. Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson esti-
mate, which equals the square root of the summed counts, divided by the number of measure-
ments, but the experimental standard deviation may be used when the Poisson assumption is 
invalid. 

If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to 
minimize the consequences of the drift by performing frequent blank measurements. 

If the background variance includes a small non-Poisson component, that component can be esti-
mated from historical background data and added to the calculated Poisson component. A chi-
squared statistic may be used to detect and quantify non-Poisson background variance (Currie, 
1972; see also Section 18B.3 of Attachment 18B), but chi-squared provides an unbiased estimate 
of the additional variance only if the background remains stationary while the data are being 
collected. If the observed background counts, in order, are N1, N2, �, Nn and the corresponding 
counting intervals are t1, t2, �, tn , then the quantity 
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Measurement Uncertainty 

may be used to estimate the non-Poisson variance of a net count rate due to background even if 
the background is not stationary.16 The distribution of ξB

2  is not simple, and ξB
2  may even assume 

negative values, which are clearly unrealistic. So, if this estimator is used, it should be calculated 
for several data sets and for more than one instrument, if possible, to give an indication of its 
reliability. Although replicate measurements are involved, this type of evaluation of uncertainty 
should be considered a Type B method. 

If background and test source measurements are performed under different conditions, the back-
ground measurement may be biased. Such a bias may occur, for example, if test sources are 
counted in containers or on planchets which are not present during background measurements. A 
situation of this kind should be avoided if possible. 

When instrument background levels are low or when count times are short, it is possible that too 
few counts will be observed to provide an accurate estimate of the measurement uncertainty. 
Attachment 19D describes a method for choosing an appropriate coverage factor when only few 
counts are observed. 

19.5.5  Radiochemical Blanks 

Instrument background is only one of the sources of counts observed when an analyte-free 
sample is analyzed. Other sources may include contaminants in the tracers, reagents, and glass-
ware used for measurements. Contamination of this type tends to be most significant when the 
analytes are naturally occurring radionuclides, such as isotopes of uranium, thorium, and radium; 
but nonnatural contaminants may also be present in some radiochemical tracers. 

The level of contamination may be determined by analyzing reagent blanks or other process 
blanks alongside laboratory samples (see Chapter 18). Alternatively, if the contaminant is present 
in a specific reagent or tracer solution, its concentration in the solution may be measured and 
incorporated into the mathematical model of the measurement. Regardless of which method of 
evaluation is used, it is important to remember that the concentration of contaminant may vary 
from one reagent lot to another, and that the amount of contaminant in the prepared source may 

16 Each term of the sum is an unbiased estimator for the non-Poisson variance of the difference between successive 
measurements of the background. Note that (Ni%1 / ti%1 & Ni / ti)

2  is an unbiased estimator for the total variance and 
(Ni %Ni%1) /  ti ti%1 , which equals (Ni %Ni%1) / (ti % ti%1) × (1/ ti % 1/ ti%1) , is an unbiased estimator for the Poisson 
variance. 
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be affected by incomplete recovery during the chemical separation and purification steps of the 
analytical process. 

If the amount of blank contaminant varies between measurements (e.g., because the analyte is 
present at varying levels in the laboratory environment), it is usually necessary to determine the 
blank level and its uncertainty by replicate measurements (a Type A evaluation). In this case, 
using the pure Poisson model for the uncertainty of the blank correction is inappropriate. Repli-
cate measurements are also more appropriate if the causes of blank contamination are simply not 
well understood. 

If there is no observable contamination when analyte-free samples are analyzed, the radiochemi-
cal blank may be only a blank source, which mimics the geometry and composition of an actual 
test source. In this case the laboratory should routinely analyze method blanks to check for con-
tamination (see Chapter 18) and take corrective action if contamination is found. 

19.5.6  Counting Efficiency 

The counting efficiency for a measurement of radioactivity (usually defined as the detection 
probability for a particle or photon of interest emitted by the source) may depend on many fac-
tors, including source geometry, placement, composition, density, activity, radiation type and 
energy and other instrument-specific factors. The estimated efficiency is sometimes calculated 
explicitly as a function of such variables (in gamma-ray spectrometry, for example). In other 
cases a single measured value is used (e.g., alpha-particle spectrometry). If an efficiency function 
is used, the uncertainties of the input estimates, including those for both calibration parameters 
and sample-specific quantities, must be propagated to obtain the combined standard uncertainty 
of the estimated efficiency. Calibration parameters tend to be correlated; so, estimated covari-
ances must also be included. If a single value is used instead of a function, the standard uncer-
tainty of the value is determined when the value is measured. 

EXAMPLE 19.20  Fifteen sources in the same geometry are prepared from a standard solution 
and used to calibrate a radiation counter. The specific activity of the standard is 150.0 Bq/g 
with a combined standard uncertainty of 2.0 Bq/g. The steps of the calibration are as follows: 

1. A 1-milliliter aliquant of the standard solution is added by pipet to each source and 
weighed on an analytical balance. The solution contains the radionuclide of interest 
dissolved in 0.3 M nitric acid, whose density at the current room temperature is 
1.0079 g/mL. The density of the solution is used only to calculate the buoyancy-correction 
factor for the mass measurements, which equals 1.001028 in this case (see Attachment 
19E). The uncertainties of the buoyancy-corrected masses are considered negligible. 
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2. A blank measurement is made. The blank count time is 6000 s. The number of blank 
counts observed is 87. 

3. Each source is counted once on the instrument for 300 s. 

The radionuclide is long-lived; so, no decay corrections are needed. The uncertainties of the 
count times are assumed to be negligible. 

The mathematical model for the calibration is: 

n 1 NS,i / tS & NB / tB g ' j n i'1 mi aS 

where 
g is the counting efficiency; 
n is the number of sources (15); 
NS, i is the gross count observed during the measurement of the ith source; 
tS is the source count time (300 s); 
NB is the observed blank count (87); 
tB is the blank count time (6000 s); 
mi is the mass of standard solution added to the ith source; and 
aS is the specific activity of the standard solution (150.0 Bq/g). 

For the purpose of uncertainty evaluation, it is convenient to rewrite the model as 

R g ' 
aS 

where 
N 1 NS,i / tS & NB / tB R ' j Ri and Ri ' , i ' 1,2, ...,n 

n i'1 mi 

The values Ri and their average, R , are estimates of the count rate produced by 1 g of the stan-
dard solution, while R / aS  is an estimate of the count rate produced by 1 Bq of activity. The 
standard uncertainty of R  can be evaluated experimentally from the 15 repeated measure-
ments. Since only one blank measurement is made, the input estimates Ri are correlated with 
each other. The covariance between Ri and Rj, for i … j, may be estimated as 

MRi MRj &1 &1 u 2(NB) 
u(Ri,Rj) ' u 2(NB) ' u 2(NB) ' 

MNB MNB
2 tB mi tB mj tB mi mj 
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n 1 u 2(R) ' s 2(R) ' (Ri & R)2 

n (n & 1) j 
i'1 

u 2(R) u 2(aS) 
u (g ) ' % g 2 

c 2 2 a a S S 

Assume the following data were obtained for the 15 calibration sources. 

Source number, 
i 

Uncorrected 
mass (g) 

Buoyancy-
corrected mass, 

mi / g 
Gross count, NS,i Ri / (s!1 @ g!1) 

1 1.0056 1.00663 18,375 60.832
2 1.0031 1.00413 18,664 61.943 
3 1.0058 1.00683 18,954 62.737 
4 1.0082 1.00924 19,249 63.562 
5 1.0069 1.00793 19,011 62.857 
6 1.0074 1.00843 18,936 62.578 
7 1.0048 1.00583 18,537 61.417 
8 1.0069 1.00794 18,733 61.937 
9 1.0031 1.00413 18,812 62.434 
10 1.0079 1.00894 18,546 61.258 
11 1.0063 1.00734 18,810 62.229 
12 1.0067 1.00774 19,273 63.736 
13 1.0055 1.00653 18,893 62.554 
14 1.0091 1.01014 18,803 62.033 
15 1.0030 1.00403 18,280 60.674 

Average,  R / (s!1 @ g!1): 62.1854 
Experimental standard deviation, s(Ri) / (s!1 @ g!1): 0.8910 

Experimental standard deviation of the mean, s( R ) / (s!1 @ g!1): 0.2301 

Then the estimated counting efficiency is 

R 62.1854 s&1 @g&1 
g ' ' ' 0.4146 

aS 150.0 Bq/g 

Measurement Uncertainty 

However, the correlation is negligible here because the uncertainty of the blank count, NB, is 
much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be 
treated as if they were uncorrelated, and the following  equations will be used to calculate the 
combined standard uncertainty of g: 
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u 2(aS) u 2(R) 
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2 2 a a S S 

and the (combined) standard uncertainty of g is given by 

(0.2301 s&1 @g&1)2 (2.0 Bq/g)2 
u(g ) ' % 0.41462 × ' 0.005736 

(150.0 Bq/g)2 (150.0 Bq/g)2 

which may be rounded to 0.0057. (Note that the relative standard uncertainty of g is approxi-
mately 1.4 %, which is large enough to justify neglecting the small uncertainties of the 
masses.) 

(0.2301 s&1 @g&1)2 (2.0 Bq/g)2 
u(g ) ' % 0.41462 % 0.0122 ' 0.0076 (19.27) 

(150.0 Bq/g)2 (150.0 Bq/g)2 

Measurement Uncertainty 

In fact the standard uncertainty of g calculated in the preceding  example may be incomplete. The 
true counting efficiency may vary from source to source because of variations in  geometry, posi-
tion and other influence quantities not explicitly included in the model. So, the standard uncer-
tainty of  g should include not only the standard uncertainty of the estimated mean, as calculated 
in the example, but also another component of uncertainty due to variations of the true efficiency 
during  subsequent measurements. The additional component  may be written as gφ, where φ is the 
coefficient of variation of the true efficiency. Then the total uncertainty of g is obtained by 
squaring  the original uncertainty estimate, adding  g2φ2 , and taking  the square root of the sum. 

In the example above, the experimental variance of the ratios, Ri, may be used to estimate  φ. 
Section 18B.2 of Attachment 18B, describes an approach for estimating  such �excess� variance 
in a series of measurements. When the methods of Section 18B.2 are used with these data, the 
resulting estimate  of  φ is approximately 0.012, or 1.2 %. So, the total uncertainty of g as a 
predictor of the counting efficiency for a source prepared and counted at some time in the future 
is 

Variations in counting  efficiency due to source placement should be reduced as much as possible 
through the use of positioning  devices that ensure a source with a given geometry  is always 
placed in the same location relative to the detector. If such devices are not used, variations in 
source position may significantly increase the measurement  uncertainty. 
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Measurement Uncertainty 

Calibrating an instrument under conditions different from the conditions under which test sources 
are counted may lead to large uncertainties in the sample activity measurements. Source geome-
try in particular tends to be an important factor for many types of radiation counters. Generally, 
calibration sources should be prepared with the sizes and shapes of test sources and counted in 
the same positions, although in some cases it may be possible to calculate correction factors 
which allow one calibration to be used for different geometries. When correction factors are 
used, their uncertainties should be evaluated and propagated. 

If the efficiency, g, is calculated from a model that includes one of the quantities Xi appearing 
elsewhere in the sample activity model, there is a correlation between the measured values of g 
and Xi, which should not be ignored. It is often simpler to include the entire expression for g in 
the expression for the laboratory sample activity before applying the uncertainty propagation 
formula. 

EXAMPLE 19.21  Suppose the counting efficiency for a measurement is modeled by the equa-
tion g = A exp(!BmS), where A and B are calibration parameters and mS is the source mass; and 
suppose the chemical yield Y is modeled by mS / mC, where mC is the expected mass at 100 % 
recovery. Then the estimated values of the counting efficiency and the yield are correlated, 
because both are calculated from the same measured value of the source mass. When the com-
bined standard uncertainty of the sample activity is calculated, the covariance u(g,Y) may be 
included in the uncertainty propagation formula (see Section 19.4.4), or the variables g and Y 
in the model may be replaced by the expressions A exp(!BmS) and mS / mC , respectively, 
before the sensitivity coefficients are calculated. 

In some cases the estimated value of the counting efficiency has no effect on the output estimate 
of laboratory sample activity. This happens often in alpha-particle spectrometry, for example, 
when isotopic tracers are used. The efficiency estimate is needed to obtain an estimate of the 
yield of the chemistry procedure, but the efficiency usually cancels out of the mathematical 
model for the laboratory sample activity and its uncertainty is not propagated when determining 
the combined standard uncertainty of the activity estimate. 

19.5.7  Radionuclide Half-Life 

The component of combined standard uncertainty associated with the half-life of a radionuclide 
is often negligible in measurements performed by typical radioanalytical laboratories, since the 
half-lives of most radionuclides of interest have been measured very accurately and in many 
cases decay times are short relative to the half-life (so that the sensitivity coefficient is small). 
However, this uncertainty component is also one of the most easily obtained components, since 
radionuclide half-lives and their standard uncertainties are evaluated and published by the 
National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. The data may be 
obtained from the NNDC web site (www.nndc.bnl.gov). 
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19.5.8  Gamma-Ray Spectrometry 

Most radiochemistry laboratories rely on commercial software for the analysis of gamma-ray 
spectra and for the evaluation and propagation of the associated uncertainties. There are a 
number of sources of measurement uncertainty in gamma-ray spectrometry, including:

  � Poisson counting uncertainty;
  � Compton baseline determination;
  � Background peak subtraction;
  � Multiplets and interference corrections;
  � Peak-fitting model errors;
  � Efficiency calibration model error;
  � Summing;
  � Density-correction factors; and
  � Dead time. 

See Chapter 16 for further discussion of measurement models and uncertainty analysis for 
gamma-ray spectrometry, but note that neither Chapter 16 nor this chapter attempts to describe 
all of the relevant issues in detail. 

19.5.9  Balances 

The uncertainty of a balance measurement tends to be small, even negligible, when the balance is 
used properly and the mass being measured is much larger than the balance�s readability. How-
ever, the uncertainty may also be difficult to evaluate unless the balance is well maintained and 
operated in a controlled environment that protects it from external influences. In particular, drafts 
or sudden changes in pressure, temperature or humidity (e.g., opening doors or dishwashers) may 
produce spurious errors. 

Even if one assumes the balance measurement uncertainty is negligible, there are reasons for per-
forming at least a partial evaluation of the uncertainty. One reason is to confirm the assumption 
that the uncertainty is negligible or to determine the range of measurement conditions under 
which the assumption is true. For example the uncertainty may be significant if the mass being 
weighed is comparable in magnitude to the readability of the balance, or if the mass is calculated 
as the difference between two much larger and nearly equal masses that are determined at differ-
ent times and under possibly different environmental conditions (e.g., a planchet and filter 
weighed before and after adding a small amount of precipitate to the filter). Another reason is to 
establish acceptance criteria for the strict quality control necessary to ensure that the uncertainty 
remains negligible. 

The uncertainty of a mass measurement generally has components associated with 
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  � Calibration;
  � Linearity;
  � Repeatability;
  � Day-to-day or hour-to-hour variability due to environmental factors; and
  � Air buoyancy. 

Other sources of uncertainty may include leveling  errors and off-center errors, which should be 
controlled. Static electrical charges  may also have an effect. For some materials gain or loss of 
mass before or after weighing  (e.g., by absorption or evaporation of water) may be significant. 
Attachment 19E of  this chapter describes balance measurement uncertainties in more detail. 

Balance manufacturers provide specifications for repeatability  and linearity, which are usually  of 
the same order of magnitude as the balance�s readability, but  tests  of repeatability and linearity 
should also be included in the routine quality control for the balance. 

Repeatability is expressed as a standard deviation, sr, and is typically assumed to be independent 
of the load. It  represents the variability of the  result of  zeroing the  balance,  loading and centering 
a mass on the pan, and reading  the final balance indication. Attachment 19E describes procedures 
for evaluating  the repeatability experimentally. 

The linearity tolerance of a balance, aL, should be specified by the manufacturer as the maximum 
deviation of the balance indication from the value that would be obtained  by  linear interpolation 
between the calibration points. Different methods may be used to convert this tolerance to a 
standard uncertainty, depending  on the form the linearity  error is assumed to take. One method, 
which is recommended by the Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical 
Measurement, is to treat the tolerance, aL, as the half-width of a  rectangular distribution and 
divide aL by  3  to obtain the standard uncertainty (Eurachem, 2000). Another method, suggested 
in Attachment 19E of this chapter, is to treat the linearity  error as a sinusoidal function of the 
load, with amplitude aL. This model requires that aL be divided by 2  to obtain the standard 
uncertainty. The latter method is used below. 

Procedures for evaluating  the relative standard uncertainties due to calibration and environmental 
factors and for calculating  the buoyancy-correction factor and its standard uncertainty are des-
cribed in Attachment 19E. 

When one evaluates the uncertainty of a balance measurement that is performed as part of a 
typical radiochemical measurement, where the relative combined standard uncertainty of the final 
result is usually  5 % or more, often much more, the evaluation may involve only a few 
components of the uncertainty. Important components for this purpose include those due to 
repeatability, linearity, and environmental factors. Gains or losses of mass may be important in 
some cases, but calibration errors and  buoyancy effects usually  can be ignored, since they  tend to 
be significant in the mass measurement only when the total uncertainty of the mass is so small 
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u(m) ' 2s % aL % m 2 φ (19.29) r env 

where 
m is the net mass; 
sr is the repeatability standard deviation; 
aL is the linearity tolerance; and 
φenv is the relative standard uncertainty due to environmental effects. 

In some cases the balance is simply zeroed before adding the mass and there is no tare measure-
ment. (Unfortunately the operation of zeroing the balance is often called �taring.�) In such cases 
the factor 2 that appears before s2

r in Equation 19.29 should be omitted. 

If tare and gross measurements are made under possibly different environmental conditions (e.g., 
on different days), then the following expression should be used to account for the greater uncer-
tainty due to environmental effects. 

u(m) ' 2s 2 
% aL

2 
% I 2 

% I 2 φ2 (19.30) r tare gross env 

Measurement Uncertainty 

that it is negligible in the overall analytical process. The remainder of this section will consider 
only the mass uncertainties due to repeatability, linearity, and environmental factors (but see 
Attachment 19E). 

A typical mass measurement in the laboratory involves separate measurements of a gross mass 
and a tare mass. The net mass, m, is determined by subtracting  the balance indication for the tare 
mass, Itare, from the indication for the  gross mass, Igross. That is, 

m ' I ' I & I net gross tare (19.28) 

If the tare and  gross measurements are made under the same environmental conditions (e.g., at 
nearly the same time), the standard uncertainty of  m is given (according  to the simplified model) 
by 

2 2 2 

EXAMPLE 19.22  The chemical yield (recovery) for a strontium analysis is determined 
gravimetrically by weighing  a stainless steel planchet before and after evaporating a strontium 
nitrate solution onto it, and then dividing  the net mass by  the predicted mass of strontium 
nitrate at 100 %  yield. The balance has readability  0.0001 g. According to the manufacturer it 
has repeatability 0.00010 g  and linearity 0.00020 g, and these values have been reasonably well 
confirmed by historical QC data. The analyst has also used balance QC data to determine that 
the relative standard uncertainty due to environmental effects is approximately 2 × 10!5 (see 
Attachment 19E). Suppose for a particular measurement the tare mass of the planchet is 
8.5923 g  and the gross mass, which is measured two hours later, is 8.5978 g. Then the net mass 
is 
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m ' 8.5978 g & 8.5923 g ' 0.0055 g 

Since two hours elapse between the tare and gross measurements, Equation 19.30 is used to 
calculate the standard uncertainty. 

u(m) ' 2s 2 
% aL

2 
% I 2 

% I 2 φ2 
r tare gross env 

' 2(0.00010 g)2 % (0.00020 g)2 % (8.5923 g)2 % (8.5978 g)2 (2 × 10&5)2 

' 0.00035 g 

Thus the relative standard uncertainty is approximately 6 %, which is significant in the determi-
nation of a yield factor. 

Note that using the linearity tolerance, 0.00020 g, is rather conservative when the difference 
between the gross and tare masses is so small, but the uncertainty component due to linearity is 
not dominant in this example. It is actually smaller than the uncertainty due to environmental 
effects. 

EXAMPLE 19.23  An aliquant of dry soil is subsampled for analysis and weighed on the same 
laboratory balance described in the preceding example. The repeatability of the balance is 
0.00010 g, the linearity is 0.00020 g, and the relative standard uncertainty due to environ-
mental effects is 2 × 10!5. Suppose the analyst zeros the balance with an empty container on 
the pan, adds the aliquant of soil to the container, and reads the final balance indication with-
out a significant time delay. If the final indication is 1.0247 g, then the mass estimate is m = 
1.0247 g and its standard uncertainty is 

u(m) ' s 2 
% aL

2 
% m 2φ2 

r Env 

' (0.00010 g)2 % (0.00020 g)2 % (1.0247 g)2(2 × 10&5)2 

' 0.00022 g 

So, the relative standard uncertainty is approximately 0.022 %, which is likely to be negligible 
in comparison to the uncertainty of subsampling (heterogeneity). 

Note that in this example the uncertainty due to environmental effects is the smallest of the 
three uncertainty components. 

Measurement Uncertainty 
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Any volumetric measuring  device should have a specified tolerance for its capacity, or for the 
possible bias of the device (e.g., ASTM E288 and ASTM E969). This tolerance, δcap, may be 
assumed to represent the half-width of a rectangular or triangular distribution. Assuming a tri-
angular distribution, as recommended by the Eurachem/CITAC Guide, one evaluates the 
uncertainty component of the volume associated with the capacity as  δcap / 6  (Eurachem, 2000). 

The simplest type of uncertainty evaluation is possible when the manufacturer of a pipetting 
device provides specifications for both bias and precision (e.g., Eppendorf® pipettes). In this case 
the Type B standard uncertainty of a pipetted volume, V, may be evaluated as 

δ2 

u(V) ' s 2 cap 
% (19.31) 

Measurement Uncertainty 

19.5.10  Pipets and Other Volumetric Apparatus 

Generally, a pipet or volumetric flask is used not to measure an  existing volume of liquid, but to 
obtain a volume of a predetermined nominal size. The nominal value is treated as if it were a 
measured value, although it is known before the �measurement.� The true volume is the variable 
quantity. Since a volumetric �measurement� of this  type cannot be repeated, pipets and flasks are 
good examples of measurement systems for which historical data are important for Type A eval-
uations of standard uncertainty. 

The uncertainty of a pipet measurement, like that of a balance measurement, is often relatively 
small in comparison to other uncertainties in a radiochemical analysis. However, the use of the 
wrong type of pipetting device for a particular measurement may result in a relatively large 
pipetting  uncertainty. For example, one manufacturer�s technical specifications for various 
models of pipetting  devices list precision values that range from 0.1 % to 5 % and bias tolerances 
that range from 0.3 % to 12 %. (Here a �bias tolerance� means an upper bound for the possible 
magnitude of the pipet�s unknown systematic error.) So, it is important for the user of a particular 
model to know its performance characteristics. 

The total uncertainty of a volumetric measurement may include several components, but since 
most of the components are negligible in a typical radiochemical measurement process, a very 
simple method of evaluation is usually adequate as long as quality control  is  strict enough to 
ensure that the measuring devices and personnel are performing as expected. The method sug-
gested here considers only two components, which are associated with precision and the capacity 
(or bias) of the device. Attachment 19E presents more complete methods of evaluation. 

6 

where δcap is the manufacturer�s stated bias tolerance and s is the stated standard deviation. 
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EXAMPLE 19.24  Suppose the manufacturer of a 5-milliliter pipetting device specifies the 
relative bias tolerance to be 0.6 % and the relative precision to be 0.2 %. Then the standard 
uncertainty of the volume may be evaluated as 

u(V) ' s 2 % 
δ2 

cap 

6 
' (5 mL × 0.002)2 % (5 mL × 0.006)2 

6 
' 0.0158 mL 

The relative standard uncertainty in this case is only about 0.3 %, which might be considered 
negligible for many applications. 

EXAMPLE 19.25  Suppose the relative bias tolerance for an adjustable-volume pipetting device 
is 2.5 % when the device is set at 10 µL, and the relative precision is 0.7 %. Then the standard 
uncertainty of a volume delivered at the 10-microliter setting may be evaluated as 

δ2 

u(V) ' s 2 % cap 
' (10 µL × 0.007)2 % (10 µL × 0.025)2 

' 0.124 µL 
6 6 

The relative standard uncertainty in this case is about 1.2 %, which would be considered 
potentially significant for many types of measurements. 

δ2 
cap % (πδ d 2 / 4)2 

men (19.32) u(V) ' 
6 

A Type A (experimental) method of evaluation may also be used (see Attachment 19E). 

Measurement Uncertainty 

When volumetric glassware is used, or when the manufacturer does not specify the precision, the 
uncertainty due to imprecision must be determined by other means. One Type B method of eval-
uating  the imprecision for volumetric glassware is  to examine the dimensions of the glassware 
and use experience and professional judgment to estimate the maximum possible deviation of the 
meniscus from the capacity  line. If δmen denotes this maximum deviation and d denotes the 
internal diameter of the glassware at the capacity mark, the  maximum deviation of the volume 
from its value at  the capacity  mark is given by  πδmen d 2 / 4 . Note that if δmen and d are expressed 
in centimeters, this expression gives a value in milliliters. Then, if  δmen is assumed to be the half-
width of a triangular distribution, the standard uncertainty of V is given by the following  equation 

JULY 2004 19-53 MARLAP 



  

  
 

 

 

 

EXAMPLE 19.26  Suppose the inside diameter of an ASTM Class-A 1-milliliter volumetric 
pipet is 0.4 cm, and the analyst estimates δmen, the maximum deviation from the capacity line, 
to be 0.075 cm. The capacity tolerance, δcap, is specified by ASTM E969 to be 0.006 mL. So, 
the standard uncertainty of the volume (V = 1 mL) is 

δ2 
% (πδ d 2 / 4)2 

cap men u(V) ' 
6 

(0.006 mL)2 % π (0.075 cm)(0.4 cm)2 / 4  2 
' 

6 
' 0.00456 mL 

The relative standard uncertainty is approximately 0.5 %. 

19.5.11  Digital Displays and Rounding 

If a measuring device, such as an analytical balance, has a digital display with resolution δ, the 
standard uncertainty of a measured value is at least δ / 2 3 . This uncertainty component exists 
even if the instrument is completely stable. 

A similar Type B method may be used to evaluate the standard uncertainty due to computer 
roundoff error. When a value x is rounded to the nearest multiple of 10n, the component of uncer-
tainty generated by roundoff error is 10n / 2 3 . When rounding is performed properly and x is 
printed with an adequate number of figures, this component of uncertainty should be negligible 
in comparison to the total uncertainty of x. 

EXAMPLE 19.27  The readability of a digital balance is 0.1 g. Therefore, the minimum stan-
dard uncertainty of a measured mass is 0.1 / 2 3  = 0.029 g. 

EXAMPLE 19.28  A computer printout shows the result x of a measurement as 

3.40E+01 +� 9.2E�02 

where the expanded uncertainty is calculated using a coverage factor of 2. Since the coverage 
factor is 2, the printout implies the standard uncertainty is 0.092 / 2, or 0.046. However, since 
the measured value is rounded to the nearest multiple of 0.1, the standard uncertainty of x 
should be increased from 0.046 to 

Measurement Uncertainty 
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0.1 2 
u(x) ' 0.0462 % ' 0.054. 

2 3 

1 1 kd 3 (19.33) 
mS mL 

& u(FS) ' 

19.5.12  Subsampling 

Appendix F  of this manual discusses laboratory subsampling. The subsampling  of heterogeneous 
materials for laboratory analysis increases the variability of the measurement result and thus adds 
a component of measurement uncertainty, which is usually difficult to quantify without replicate 
measurements. Appendix  F summarizes important aspects of the statistical theory  of particulate 
sampling  and applies the theory to subsampling  in the radiation laboratory (see also Gy, 1992, 
and Pitard, 1993). The mathematical estimates obtained using  the theory often require unproven 
assumptions about the material analyzed and rough estimates of unmeasurable parameters. How-
ever, in some cases the theory  can be used to suggest how subsampling errors may be affected  by 
either changing  the subsample size or grinding  the material  before subsampling. Of course the 
total measurement uncertainty, including components contributed  by  subsampling, may always 
be evaluated  by  repeated subsampling and analysis. 

If subsampling  is not repeated, its effects may  be represented in the mathematical measurement 
model by including  an input quantity  FS whose value is the ratio of the analyte concentration of 
the subsample to that of the total sample. This ratio, which will be called the subsampling factor 
(a MARLAP term), appears in the model as a divisor of the net instrument signal and thus is sim-
ilar to the chemical yield, counting efficiency and other sensitivity  factors. The value of FS is 
estimated as 1, but the value has a standard uncertainty, u(FS), which increases the combined 
standard uncertainty of the result. 

Although the component of uncertainty caused  by  the subsampling of heterogeneous solid matter 
may be difficult to estimate, it should not be ignored, since it may be  relatively large and in some 
cases may even dominate all other components. One may use previous experience with similar 
materials to evaluate the uncertainty, possibly with the aid of the information and methods pre-
sented in Appendix  F. Appendix  F shows how the value of the subsampling uncertainty  depends 
on the maximum particle diameter, d, the mass of the sample, mL, and the mass of the subsample, 
mS. The equation for the standard uncertainty of FS typically has the form 

where the value of  depends on the sample. By default, if �hot particles� are not suspected, and 
if reasonable precautions are taken either to homogenize (mix) the material or to build the sub-
sample from  a large number of randomly  selected increments, one may assume k  . 0.4 g/cm3, or 

k
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EXAMPLE 19.29 

Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve, 
which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram sub-
sample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard 
uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18 
sieve, whose mesh size is 1.0 mm. 

Solution: First, assume d = 2.0 mm. Then the subsampling uncertainty is 

1 1 u(FS) ' & (0.0004 g/mm3)(2.0 mm)3 ' 0.063 
0.7957 g 609 g 

Now assume d = 1.0 mm. Then 

1 1 u(FS) ' & (0.0004 g/mm3)(1.0 mm)3 ' 0.022 
0.7957 g 609 g 

Measurement Uncertainty 

0.0004 g/mm3. If hot particles are suspected, special measurement techniques are probably 
required, as described in Appendix  F. In  this case Equation 19.33 should not be used. 

Another alternative is to evaluate the subsampling  variance for each type of material  and analyte 
at a  specified maximum particle  size, d, and subsample mass, mS. Such an evaluation can be per-
formed experimentally by repeated subsampling  and analysis of one or more actual samples, pro-
vided that the concentrations are high enough and the measurement precision good enough to 
allow estimation of the variance attributable to subsampling. However, an artificially spiked 
sample is usually inappropriate for this purpose, because its heterogeneity differs from that of 
real samples. If the precision of the measurement process after subsampling  is inadequate, the 
subsampling  variance may be hard to quantify experimentally. 

19.5.13  The Standard Uncertainty for a Hypothetical Measurement 

MARLAP�s recommended method selection criteria in Chapter 3 require that a laboratory esti-
mate the standard uncertainty  for a measurement of the activity  concentration of a radionuclide in 
a hypothetical laboratory sample whose true concentration is specified (i.e., the �method uncer-
tainty,� as defined  by  MARLAP). To estimate the combined standard uncertainty of the meas-
ured concentration, one must obtain estimates for all the input quantities and their standard 
uncertainties. All quantities except the  gross instrument signal may be measured and the standard 
uncertainties evaluated by routine Type A and Type B methods. Alternatively, the values and 
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EXAMPLE 19.30  Suppose the mathematical model for a radioactivity measurement is 

a ' 
NS / tS & NB / tB 

&λ (tD % tS /2)  FS mS Yg e 
where 

a is the specific activity of the radionuclide in the sample; 
NS is the test source count; 
NB is the blank count; 
tS is the source count time; 
tB is the blank count time; 
tD is the decay time; 
mS is the mass of the test portion; 
Y is the chemical yield; 
g is the counting efficiency; 
λ is the decay constant; and 
FS is the subsampling factor. 

With values given for the specific activity a; test portion mass mS; blank count NB; count times 
tS, tB, and tD; efficiency g ; and yield Y; the source count NS can be predicted. The predicted 
value is NS = tS (amS Yg exp(!λ(tD + tS / 2) ) + NB / tB). When this value is treated like a meas-
ured value, its estimated variance according to Poisson statistics is u2(NS) = NS. So, assuming 
negligible uncertainties in the times tS, tB, and tD, the (first-order) uncertainty propagation for-
mula gives the combined variance of the output estimate, a, as 

u 2(NS) / tS
2 
% u 2(NB) / t 2 u 2(mS) 

% u 2(Y) 
% u 2(g ) u 2(FS) 

uc
2(a) ' B 

% a 2 % 
2 �2 λ (tD % tS /2)  Y 2 g 2 F 2 mS Y 2g 2 e m 2 

S S 

�λ (tD % tS /2)  
% NB amS Yg e / tB / tS % NB / tB

2 u 2(mS) 
% u 2(Y) 

% u 2(g ) u 2(FS) 
' % a 2 % 

2 �2 λ (tD % tS /2)  Y 2 g 2 F 2 mS Y 2g 2 e m 2 
S S 

Measurement Uncertainty 

their standard uncertainties may be determined from historical data. The estimate of the  gross 
signal and its standard uncertainty must be obtained by other means, since the laboratory sample 
is only hypothetical. The predicted value of the gross count NS is calculated by rearranging  the 
equation or equations in the model and solving  for  NS. The standard uncertainty of the measured 
value may then be evaluated either from theory (e.g., Poisson counting statistics), historical data, 
or experimentation. 
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ATTACHMENT 19A 
Statistical Concepts and Terms 

19A.1  Basic Concepts 

Every laboratory measurement involves a measurement error. Methods for analyzing measure-
ment error are generally based on the theory of random variables. A random variable may be 
thought of as the numerical outcome of an experiment, such as a laboratory measurement, which 
produces varying results when repeated. In this document a random variable is most often the 
result of a measurement. Random variables will usually be denoted in this attachment by upper-
case letters. 

Of primary importance in almost any discussion of a random variable is its distribution, or prob-
ability distribution. The distribution of a random variable X describes the possible values of X 
and their probabilities. Although the word �distribution� has a precise meaning in probability 
theory, the term will be used loosely in this document. This attachment describes several types of 
distributions, including the following: 

� normal (Gaussian) 
� log-normal (or lognormal) 
� chi-squared (or chi-square) 
� Student�s t 
� rectangular (uniform) 
� trapezoidal  
� exponential 
� binomial 
� Poisson 

Normal distributions are particularly important because they appear often in measurement proc-
esses. The other types listed are also important in this chapter, but only the exponential, binomial 
and Poisson distributions are described in the text. 

The distribution of X is uniquely determined by its distribution function, defined by F(x) = 
Pr[X # x], where Pr[X # x] denotes the probability that X is less than or equal to x. The distribu-
tion function is also called the cumulative distribution function (cdf). If there is a function f(x) 
such that the probability of any event a # X # b is equal to Ia

b f(x) dx (i.e., the area under the curve 
y = f(x) between x = a and x = b), then X is a continuous random variable and f(x) is a probability 
density function (pdf) for X. When X is continuous, the pdf uniquely describes its distribution. A 
plot of the pdf is the most often used graphical illustration of the distribution (e.g., see Figures 
19.3 and 19.4), because the height of the graph over a point x indicates the probability that the 
value of X will be near x. 
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µ µ + σ 

µ  = Mean = Median 
σ  = Standard deviation 

σ 

FIGURE 19.3 � A symmetric distribution 

Two useful numerical characteristics of the distribution of a random variable are its mean and 
variance. The mean is also called the expectation or the expected value and may be denoted by 
µX or E(X). The mean of a distribution is conceptually similar to the center of mass of a physical 
object. It is essentially a weighted average of all the possible values of X, where the weight of a 
value is determined by its probability. The variance of X, denoted by σX 

2, Var(X), or V(X), is a 
measure of the variability of X, or the dispersion of its values, and is defined as the expected 
value of (X ! µX)2. 

The standard deviation of X, denoted by σX is defined as the positive square root of the variance. 
Although the variance appears often in statistical formulas, the standard deviation is a more intui-
tive measure of dispersion. If X represents a physical quantity, then σX has the same physical 
dimension as X. The variance σX 

2, on the other hand, has the dimension of X squared. 

Any numerical characteristic of a distribution, such as the mean or standard deviation, may also 
be thought of as a characteristic of the random variables having that distribution. 

The mean and standard deviation of a distribution may be estimated from a random sample of 
observations of the distribution. The estimates calculated from observed values are sometimes 
called the sample mean and sample standard deviation. Since the word �sample� here denotes a 
statistical sample of observations, not a physical sample in the laboratory, metrologists often use 
the terms arithmetic mean, or average, and experimental standard deviation to avoid confusion. 

The mean is only one measure of the center of a distribution (�measure of central tendency�). 
Another is the median. The median of X is a value x0.5 that splits the range of X into upper and 
lower portions which are equally likely, or, more correctly, a value x0.5 such that the probability 
that X # x0.5 and the probability that X $ x0.5 are both at least 0.5. Note that for some distributions 
the median may not be unique. Figure 19.4 shows the probability density function of a symmetric 
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distribution, whose mean and median coincide, and Figure 19.4 shows the pdf of an asymmetric 
distribution, whose mean and median are distinct. 

Median 
Mean 

µ 

µ  = Mean 
σ  = Standard deviation 

µ + σ 

σ 

FIGURE 19.4 � An asymmetric distribution 

The median of X is also called a quantile of order 0.5, or a 0.5-quantile. In general, if p is a num-
ber between 0 and 1, a p-quantile of  X is a number xp such that the probability that X < xp is at 
most p and the probability that  X  #  xp is at least p. A p-quantile is often called a 100pth  percentile. 

Sometimes the standard deviation of a nonnegative quantity is more meaningful when expressed 
as a fraction of the mean. The coefficient of variation, or CV, is defined for this reason as the 
standard deviation divided by the mean. The coefficient of variation is a dimensionless number, 
which may be converted to a percentage. The term �relative standard deviation,� or RSD, is also 
used. The term �relative variance� is sometimes used to mean the square of the relative standard 
deviation. 

The results of two analytical measurements may be correlated when they have measurement 
errors in common. This happens, for example, if laboratory samples are analyzed using the same 
instrument without repeating  the instrument calibration. Any error in the calibration parameters 
affects all results obtained from the instrument. This type of association between two quantities X 
and Y is measured by their covariance, which is denoted by  σX,Y or Cov(X,Y). The covariance of X 
and Y is defined as the expected value of the product (X  !  µX)(Y  !  µY). 

Covariance, like variance, is somewhat nonintuitive because of its physical dimension. Further-
more, a large value for the covariance of two variables X and Y does not necessarily indicate a 
strong  correlation between them. A measure of correlation must take into account not only the 
covariance σX,Y, but also the standard deviations σX and σY. The correlation coefficient, denoted 
by  ρX,Y, is therefore defined as σX,Y divided by the product of σX and σY. It is a dimensionless num-
ber between !1 and +1. The quantities X and Y are said to be strongly correlated when the abso-
lute value of their correlation coefficient is close to 1. 
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Statistical formulas are generally simpler when expressed in terms of variances and covariances, 
but the results of statistical analyses of data are more easily understood when presented in terms 
of standard deviations and correlation coefficients. 

The lack of a correlation between two quantities X and Y is not a sufficient condition to guarantee 
that two values f(X) and g(Y) calculated from them will also be uncorrelated. A stronger condi-
tion called independence is required. For most practical purposes, to say that two quantities are 
�independent� is to say that their random components are completely unrelated. A more rigorous 
definition appears in the MARLAP glossary. 

When the value of a random variable X is used to estimate the value of an unknown parameter θ, 
then X is called an estimator for θ. The bias of X is the difference between the mean µX and the 
actual value θ. If the bias is zero, then X is said to be unbiased; otherwise, X is biased. Note that 
metrologists use the term �bias� with a somewhat different but similar meaning (see Section 
19.3.1). 

As mentioned in Section 19.4.5.2, even if X is an unbiased estimator for θ, the application of a 
nonlinear function, f, to X may produce a biased estimator, f(X), for the value of f(θ). Colloquially 
speaking, the function of the mean is different from the mean of the function. For example, if X 
is an unbiased estimator for θ, then generally X2 is a biased estimator for θ2. 

If the value of X is used not to estimate the value of a parameter but to �predict� the value of 
another random variable, Y, whose value oftentimes is not directly observed, then X is called a 
predictor for Y. 

19A.2  Probability Distributions 

This section briefly describes the probability distributions used in Chapter 19. 

Distributions may be classified according to their mathematical properties. Distributions in the 
same class or family are described by the same mathematical formulas. The formulas involve 
numerical parameters which distinguish one member of the class from another. 

Two important kinds of distributions are the normal and log-normal, which are observed often in 
nature. Other types of distributions important in radioanalysis include the rectangular, binomial, 
Poisson, Student�s t, chi-squared and exponential distributions. Poisson distributions in particular 
are important in radiation counting measurements and are described in Section 19.5.2. 
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19A.2.1  Normal Distributions 

Many quantities encountered in nature and in the laboratory have distributions which can be de-
scribed by the �bell curve.� This type of distribution, called a normal, or Gaussian, distribution, 
is usually a reasonably good model for the result of a radioanalytical measurement. A number of 
commonly used methods for evaluating  data sets depend on their having  an approximately nor-
mal distribution. The probability density function (pdf) for a normal distribution is shown in Fig-
ure 19.5. 

A normal distribution is uniquely specified by its mean µ and variance σ2. The normal distribu-
tion with mean 0 and variance 1 is called the standard normal distribution. If  X is normally dis-
tributed with mean  µ and variance σ2, then (X  !  µ) /  σ has the standard normal distribution. 

The sum of a large number of independent random variables has an approximately normal distri-
bution, even if the individual variables themselves are not normally distributed, so long  as the 
variance of each term is much smaller than the variance of the sum.17 This is one reason why the 
normal distribution occurs often in nature. When a quantity is the result of additive processes 
involving  many small random variations, the quantity tends to be normally distributed. It is also 
true that many other distributions, such as the binomial, Poisson, Student�s t and chi-squared, can 
be approximated by normal distributions under certain conditions. 

The mean value of a normal distribution is also its median, or the value that  splits the range into 
equally likely portions. 

17 The number of quantities required to obtain a sum that is approximately normal depends on the distribution  of  the 
quantities. If the distribution is symmetric and mound-shaped  like the bell curve, the  number may be rather  small. 
Other distributions  such as the log-normal distribution, which is  asymmetric, may require a much larger number. 
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The value of a normally distributed quantity will be within one standard deviation of the mean 
about 68 % of the time. It will be within two standard deviations about 95 % of the time and 
within three standard deviations more than 99 % of the time. It is important to remember that 
these percentages apply only to normal distributions. 

19A.2.2  Log-normal Distributions 

The concentration of a contaminant in the environment may not be normally distributed. Instead 
it often tends to be log-normally distributed, as shown in  Figure 19.6. 

By definition, a quantity  X has a log-normal (or lognormal) distribution if the logarithm of  X is 
normally distributed. The product of a large number of independent positive random variables 
with similar variances is approximately log-normal, because the logarithm of the product is a 
sum of independent random variables, and the sum is approximately normal. The concentration 
of a contaminant in the environment tends to  be log-normal because it is the result of processes 
of concentration and dilution, which are multiplicative. 

The distribution of a log-normal quantity  X can be uniquely specified by the mean µln  X and vari-
ance  σ2 

lnX of ln  X, but more commonly used parameters are the geometric mean  µg = exp(µln  X) 
and the geometric standard deviation  σg = exp(σln  X). The geometric mean and geometric standard 
deviation are defined so that, if k is a positive number, the probability that  X will fall between 
µ k k

g / σg  and µgσg  is the same as the probability that lnX, which is normally distributed, will fall 
between µ 2

ln  X  !  kσln  X and µln  X + kσln  X. For example, the value of X will be between  µg / σg and 
µgσ2

g about 95 % of the time. 

Although the mean and median of a normal distribution are identical, for a log-normal distribu-
tion these values are distinct. The median, in fact, is the same as the geometric mean µg. As 
shown in Figure 19.6, the mean µ is larger than the geometric mean µg . The mean may be cal-
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culated from the geometric mean and geometric standard deviation as shown in Table G.6 in 
Appendix G.18,19 

The log-normal distribution is important for the interpretation of environmental radiation data, 
but it may also have applications in the laboratory. Two possible applications are decay factors 
e!λt based on uncertain time measurements and concentrations of contaminants in laboratory 
reagents. 

19A.2.3  Chi-squared Distributions 

If Z1, Z2, �, Zν are independent random variables and each has the standard normal distribution, 
the sum Z1

2 + Z2
2 + """ + Z2 

ν has a chi-squared (or chi-square) distribution with ν degrees of free-
dom. A chi-squared distribution, like a log-normal distribution, is asymmetric and does not in-
clude negative values. For large ν, the chi-squared distribution is approximately normal. Figure 
19.7 shows the densities for chi-square distributions with 1, 2, 3 and 10 degrees of freedom. 

ν = 1 

ν = 2 

ν = 3 ν = 10 

0 5 10 15 20 
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f(x) 

x 

FIGURE 19.7 � Chi-squared distributions 

Chi-squared distributions are used frequently in hypothesis testing, especially for tests of hypoth-
eses about the variances of normally distributed data. Chi-squared distributions also appear in 
least-squares analysis (see Attachment 19C). 

18 Given the mean µ and standard deviation σ of the log-normal distribution, the geometric mean and geometric 
standard deviation may be calculated as µg ' µ2 µ2 % σ2  and σg ' exp ln(1 % σ2 / µ2) . 

19 Note that the symbols µ and σ are often used to denote the mean and standard deviation of ln X, which is normally 
distributed, rather than those of X, which is log-normally distributed. 
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A sum of independent chi-squared random variables is also chi-squared. Specifically, if X and Y 
are independent chi-squared random variables with ν1 and ν2 degrees of freedom, respectively, 
then X + Y has a chi-squared distribution with ν1 + ν2 degrees of freedom. 

The mean of a chi-squared distribution equals the number of degrees of freedom ν, and the vari-
ance equals 2ν. The median does not have a simple formula. 

19A.2.4  T-Distributions 

If Z is standard normal, X is chi-squared with ν degrees of freedom, and Z and X are independent, 
then  Z / X / ν has a Student�s t-distribution with ν degrees of freedom. A t-distribution is sym-
metric and mound-shaped like a normal distribution and includes both positive and negative val-
ues. Figure 19.8 shows the pdf for a t-distribution with 3 degrees of freedom. A dotted standard 
normal curve is also shown for comparison. 

f(x) 

0.4 

0.3 

0.2 

0.1 

0.0 
x 

Normal 

−4  −3  −2  −1  0  1  2  3  4  

FIGURE 19.8 � The t-distribution with 3 degrees of freedom 

When ν is large, the t-distribution is virtually identical to the standard normal distribution. 

The median of a t-distribution is zero. The mean is also zero if ν > 1 but is undefined for ν = 1. 
The variance equals ν / (ν ! 2) if ν > 2 and is undefined otherwise. 

T-distributions are often used in tests of hypotheses about the means of normally distributed data 
and are important in statistical quality control. T-distributions are also used in the procedure de-
scribed in Attachment 19D for calculating measurement coverage factors. 

If X1, X2, �, Xn are independent and normally distributed with the same mean µ and the same 
variance, then the quantity 

X � µ 
sX / n 

Measurement Uncertainty: Statistical Concepts and Terms 
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where X  is the arithmetic mean and sX is the experimental standard deviation, has a t-distribution 
with n ! 1 degrees of freedom. 

If X1, X2, �, Xn, Y are independent and normally distributed with the same mean and variance, 
then the quantity 

Y � X 
sX 1 % 1/n 

where X  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-
distribution with n ! 1 degrees of freedom. 

If Z is standard normal, X is chi-squared with ν degrees of freedom, Z and X are independent, and 
δ is a constant, then (Z % δ) /  X / ν  has the noncentral t-distribution with ν degrees of freedom 
and noncentrality parameter δ (Stapleton, 1995). When the (central) t-distribution is used to test 
the null hypothesis that two normal distributions have the same mean, a noncentral t-distribution 
describes the distribution of the test statistic if the null hypothesis is false. For example, if X1, 
X2, �, Xn, Y are independent and normally distributed with the same variance σ2, and X1, X2, �, 
Xn have the same mean µX, then the statistic 

Y & X 
sX 1 % 1/n 

where X  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-
distribution with n ! 1 degrees of freedom if µX = µY, but it has a noncentral t-distribution with 
noncentrality parameter 

µ Y � µX δ �� 
σ 1 % 1 /  n 

if µX … µY. 

The noncentral t-distribution is useful in the theory of detection limits and appears in Attachment 
20A of Chapter 20, �Detection and Quantification Capabilities.� 

19A.2.5  Rectangular Distributions 

If X only assumes values between a� and a+ and all such values are equally likely, the distribution 
of X is called a rectangular distribution, or a uniform distribution (see Figure 19.9). 

The mean and median of the rectangular distribution equal the midrange (a� + a+) / 2, and the 
standard deviation is (a+ ! a�) / 2 3 . 
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FIGURE 19.10 � A trapezoidal distribution 

Rectangular distributions are frequently used for Type B  evaluations of standard uncertainty (see 
Sections 19.4.2.2 and 19.5.11). 
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a− a x 
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FIGURE 19.9 � A rectangular distribution 
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19A.2.6  Trapezoidal and Triangular Distributions 

Another type of bounded distribution used for Type B  evaluations of standard uncertainty is a 
trapezoidal distribution, which is described in Section 19.4.2.2. If  X has a trapezoidal distribu-
tion, it only assumes values between two numbers a� and a+, but values near the midrange 
(a� + a+) / 2 are more likely than those near the extremes. The pdf for a  symmetric trapezoidal 
distribution is shown in  Figure 19.10. Asymmetric trapezoidal distributions are not considered 
here. 

The mean and median of this distribution are both equal to the midrange.  If the width of the trap-
ezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation 
is a (1 % β2) / 6 . As β approaches 0, the trapezoidal distribution approaches a triangular distri-
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bution, whose standard deviation is a / 6 , or (a+ ! a�) / 2 6 . As β approaches 1, the distribution 
approaches the rectangular distribution described in Section 19A.2.5. 

19A.2.7  Exponential Distributions 

The exponential distribution describes the life of an unstable atomic nucleus, whose remaining 
life does not depend on its current age. The distribution is described by one parameter, often 
denoted by λ, which represents the fractional decay rate. The mean of the distribution is 1 / λ and 
its variance is 1 / λ2. The median is the same as the half-life of the radionuclide. The pdf for an 
exponential distribution is shown in Figure 19.11. 

0 x0.5 

0 

λ/4 

λ/2 

3λ/4 

λ 

f(x) 

x 

FIGURE 19.11 � An exponential distribution 

The exponential distribution also describes waiting times between events in a Poisson process. 
For example, if the instrument background for a radiation counter follows the Poisson model 
with mean count rate rB (see Section 19A.2.9), the waiting times between counts are 
exponentially distributed with parameter rB. 

19A.2.8  Binomial Distributions 

The binomial distribution, introduced in Section 19.5.2, arises when one counts the outcomes of 
a series of n independent and identical experiments, each of which can produce the result �suc-
cess� or �failure.� If the probability of success for each event is p, the number of successes has a 
binomial distribution with parameters n and p. Important facts about the binomial distribution 
include the following:

  � The distribution is discrete; its only possible values are 0, 1, 2, �, n.
  � The mean of the distribution is np.
  � The variance is np(1 ! p).
  � If n is large and p is not close to 0 or 1, the distribution is approximated well by a normal 

distribution. 

Measurement Uncertainty: Statistical Concepts and Terms 

JULY 2004 19-73 MARLAP 



  

 

 
 

 
  

If X is binomial with parameters n and p, then for k = 0, 1, 2, �, n, the probability that X = k is 
given by the equation 

Pr[X �� k] �� n 
k 

p k(1 � p)n�k 

where  denotes a binomial coefficient, which equals n 
k 

n! 
k!(n&k)! 

(19.36) 

. 

19A.2.9  Poisson Distributions 

As explained in Section 19.5.2, the Poisson distribution arises naturally as an approximation to 
the binomial distribution when n is large and p is small. Even if n is not large, the variance of the 
binomial distribution can be approximated using the Poisson model if p is small. Other important 
facts about a Poisson distribution include the following: 

� The distribution is discrete; its only possible values are the nonnegative integers 
0, 1, 2, �. 

� The mean and variance of the distribution are equal. 
� If the mean is large, the distribution is well approximated by a normal distribution. 
� A sum of independent Poisson random variables is also Poisson. 

If X has a Poisson distribution with mean µ, then for any nonnegative integer n, the probability 
that X = n is given by 

µ ne&µ 
Pr[X ' n] ' (19.37) 

n! 

The Poisson distribution is related to the chi-squared distribution, since 

Pr[X # n] ' Pr[χ2(2n % 2) $ 2µ] and Pr[X $ n] ' Pr[χ2(2n) # 2µ] (19.38) 

where χ2(ν) denotes a chi-squared random variable with ν degrees of freedom. This fact allows 
one to use quantiles of a chi-squared distribution to construct a confidence interval for µ based 
on a single observation X = n (Stapleton, 1995). Table 19.3 lists 95 % two-sided confidence 

χ2 χ2 intervals for µ some small values of n. For large values of n, the quantiles (2n) and (2n + 2) 
may be approximated using the Wilson-Hilferty formula (NBS, 1964): 

p p 

3 

2 2 (19.39) χ2 
p(ν) . ν 1 & % zp 9ν 9ν 
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   TABLE 19.3 � 95 % confidence interval for a Poisson mean 

n 
1 χ2 µlower = (2n) 0.025 2 

1 χ2 µupper = (2n + 2) 0.975 2 

0 0.000 3.689 
1 0.025 5.572 
2 0.242 7.225 
3 0.619 8.767 
4 1.090 10.242 
5 1.623 11.668 

n % 0.5 & µ Pr[X # n] . Φ (19.40) 
µ 

Measurement Uncertainty: Statistical Concepts and Terms 

As noted above, when the mean µ is large, the Poisson distribution may be approximated  by  a 
normal distribution. Specifically, 

where Φ denotes the distribution function of the standard normal distribution. For most purposes, 
this approximation is adequate if  µ  $ 20. 

Figures 19.12a and b show how the normal approximation improves as µ increases from 3 to 
100. For any  n, the probability Pr[X  #  n] is represented by the total area of bars 0 to n, while the 
value given by the normal approximation is represented by the total area under the dotted curve 
to the  left of  the  vertical line at n + 0.5. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Poisson: Bars 
Normal: Dotted line 

µ = 3 

n 

FIGURE 19.12a � Poisson distribution vs. normal distribution, µ = 3 
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n 

FIGURE 19.12b � Poisson distribution vs. normal distribution, µ = 100 
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ATTACHMENT 19B 
Example Calculations 

19B.1  Overview 

The following example shows how to calculate the combined standard uncertainty for a typical 
radioanalytical measurement. 

19B.2  Sample Collection and Analysis 

A soil sample is analyzed for 239/240Pu and 238Pu by alpha-particle spectrometry.

  � The sample is collected on July 10, 1999, at 11:17 am EDT, and shipped to a laboratory for 
analysis.

  � The entire laboratory sample is dried, weighed and ground to a maximum particle size of 
1.0 mm. The dry weight is approximately 2 kg.

  � The prepared sample is homogenized, and a test portion is removed by increments. The 
documented procedure requires a test portion of approximately 0.5 g.

  � The test portion is weighed and the mass is found to be 0.5017 g. The standard uncertainty of 
the mass includes contributions from repeatability, linearity, and sensitivity drift.

  � A 1-milliliter aliquant of 242Pu tracer is added to the test portion. The activity concentration of 
the tracer solution has previously been measured as 0.0705 Bq/mL with a standard uncer-
tainty of 0.0020 Bq/mL on June 30, 1999, at 11:00 am CDT. The aliquant is dispensed by a 
pipet, whose dispensed volume has a combined standard uncertainty previously determined to 
be 0.0057 mL.

  � After fusion, dissolution, chemical purification, and coprecipitation, a test source on a 
stainless steel planchet is prepared for counting in an alpha-particle spectrometer.

  � The efficiency of the spectrometer for the chosen geometry, which is assumed to be 
independent of the particle energy, has previously been measured as 0.2805 with a standard 
uncertainty of 0.0045.

  � A blank source is counted in the spectrometer for 60,000 s. The blank consists of a filter 
mounted on a planchet in the same geometry as the test source. In the 242Pu region of interest, 
2 counts are measured; and in the 238Pu region of interest, 0 counts are measured. Historical 
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data for this and similar spectrometers at the laboratory indicate that the background is stable 
between measurements.

  � The test source is placed in the spectrometer and counted for 60,000 s, beginning on August 
24, 1999, at 4:47 pm CDT. In the 242Pu region of interest, 967 counts are measured; and in the 
238Pu region of interest, 75 counts are measured. 

  � It is assumed that there is no detectable plutonium in the reagents; however, a method blank 
is analyzed simultaneously using a different spectrometer to check for contamination of 
reagents and glassware. 

In this example the measurand will be the specific activity of 238Pu in the 2-kilogram sample (dry 
weight) at the time of collection. 

19B.3  The Measurement Model 

The following notation will be used: 

mS is the mass of the test portion (0.5017 g) 
mL is the mass of the entire laboratory sample (~2000 g) 
d is the mesh size of the sieve (1.0 mm) 
cT is the tracer activity concentration (0.0705 Bq/mL) 
VT is the tracer aliquant volume (1 mL) 
tB is the blank count time (60,000 s) 
tS is the count time for the test source (60,000 s) 
NS is the total count in a region of interest when the source is counted (238Pu or 242Pu) 
NB is the count in a region of interest when the blank is counted (238Pu or 242Pu) 
R is the fraction of alpha particles with measured energy in the region of interest (238Pu 

or 242Pu) 
D is the decay-correction factor (238Pu or 242Pu) 
g is the alpha-particle counting efficiency 
Y is the plutonium chemical yield fraction 
FS is the subsampling factor (estimated as 1.00) 
a238 is the specific activity of 238Pu in the dried laboratory sample, decay-corrected to the 

time of collection 

Subscripts will be used to distinguish between quantities associated with particular regions of 
interest (238Pu or 242Pu). 

The decay-correction factor for either isotope is calculated as follows: 
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&λ tD 1 & e D ' e 

λ tS 

where λ is the decay constant (s!1) and tD is the time between collection and the start of the count-
ing measurement (3,911,400 s). Since λtS is small for both isotopes in this example, D may be 
approximated accurately by 

&λ (tD % tS /2)  D ' e 

The half-lives of 238Pu and 242Pu are 87.75 a and 375,800 a, respectively. So, 

D238 ' exp &ln2 
(87.75 a)×(365.2422 d /a)×(86,400 s /d) 

3,911,400 s % 
60,000 s 

2 
' 0.9990 

and D242 ' 1.000 . 

Dead time is negligible in this example; so, no distinction is made between the real time and the 
live time. If the real time were greater than the live time, the correction for decay during the 
counting period would be based on the real time. 

The fraction of alpha particles of each isotope actually measured in the nominal region of interest 
is estimated to lie between 0.96 and 1.00. A rectangular distribution is assumed, with center at 
0.98 and half-width equal to 0.02. Then the Type B standard uncertainties of R238 and R242 are 

0.02 
' 0.01155 u(R238) ' u(R242) ' 

3 

The chemical yield of plutonium is calculated using the model 

Y ' 
NS,242 / tS & NB,242 / tB 

cT VT g R242 D242 

Then the following model is used to estimate the measurand. 

NS,238 / tS & NB,238 / tB 
' a238 mS Yg R238 D238 FS 

Measurement Uncertainty: Example Calculations 

&λ t
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When values are inserted, 

967 / (60,000 s) & 2 / (60,000 s) Y ' ' 0.82990 
(0.0705 Bq/mL)×(1 mL)×0.2805×0.98×1 

75 / (60,000 s) & 0 / (60,000 s) 
' ' 0.010932 Bq/g a238 (0.5017 g)×0.82990×0.2805×0.98×0.9990×1.00 

(or 10.932 Bq/kg) 

19B.4  The Combined Standard Uncertainty 

The efficiency, g, effectively cancels out of the equation for a238, because it is multiplied by the 
yield Y and also appears as a factor in the denominator of the expression for Y (see also Section 
19.5.6). Therefore, the uncertainty of g has no effect on the uncertainty of a238. When using the 
uncertainty propagation formula to calculate the combined standard uncertainty of a238, one might 
include a covariance term for u(Y,g) to account for the relationship between the measured values 
of Y and g, but it is simpler to treat Yg as one variable. Application of the first-order uncertainty 
propagation formula (Section 19.4.3) to the equations above then gives the following: 

2 u 2(NS,242) /  tS
2 
% u 2(NB,242) /  tB

2 u 2(cT) u 2(VT) ) 
u (Yg ) ' % (Yg )2 % % 

u 2(R242 
c 2 2 V 2 R 2 cT VT

2 R 2 c 242 D 2 
T 242 242 T 

2 u 2(NS,238) /  tS
2 
% u 2(NB,238) /  tB

2 
2 u 2(mS) 

% u 2(Yg ) u 2(R238) u 2(FS) 
uc (a238) ' % a238 % % 

2 (Yg )2 R 2 F 2 mS
2 (Yg )2 R 2 m 238 D 2 S S 238 238 

All other input estimates are assumed to be uncorrelated. 

Note that u2(FS) is the subsampling variance associated with taking a small test portion 
(0.5017 g) from a much larger sample (2000 g). The estimation method suggested in Section 
19.5.12 will be used here to evaluate u(FS). 

1 1 kd 3 where k ' 0.0004 g/mm3 & u(FS) ' 
mS mL 

' 
1 1 (0.0004 g/mm3)(1.0 mm)3 & 

0.5017 g 2000 g 
' 0.0282. 
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 TABLE 19.4 � Input estimates and standard uncertainties 

INPUT 
QUANTITY 

INPUT 
ESTIMATE 

STANDARD 
UNCERTAINTY 

MEASUREMENT 
UNIT 

TYPE OF 
EVALUATION 

mS 0.5017 2.2 × 10!4 g Combined* 

cT 0.0705 0.0020 Bq/mL Combined* 

VT 1.0000 0.0057 mL Combined* 

tB 60,000 Negligible s B 
tS 60,000 Negligible s B 

NB, 238 0 1 counts B 
NB, 242 2 1.73 counts B 
NS, 238 75 8.72 counts B 
NS, 242 967 31.1 counts B 

R238, R242 0.98 0.01155 none B 
g 0.2805 0.0045 none Combined* 

FS 1.00 0.0282 none B 
D238 0.9990 Negligible none B 
D242 1.0000 Negligible none B 

* �Combined� here means �determined by uncertainty propagation.� 

Measurement Uncertainty: Example Calculations 

Appendix F  provides more information about subsampling  errors and methods for estimating 
their variances. 

The standard uncertainty of the mass of the test portion, mS, is evaluated using  the methods de-
scribed in Section 19.5.9. The total uncertainty of mS has components due to repeatability, lin-
earity, and sensitivity drift (environmental factors). Assume the repeatability standard deviation 
is 0.0001 g, the linearity tolerance is 0.0002 g, and the relative standard uncertainty due to sen-
sitivity drift is 1 × 10!5. If the balance is zeroed with an empty container on the pan, the soil is 
added to the container, and the display is read, then the standard uncertainty of the mass mS is 

u(mS) ' (0.0001 g)2 % (0.0002 g)2 % (0.5017 g)2 (1 × 10&5)2 ' 2.2 × 10&4 g 

Since extremely low counts are possible, each Poisson counting variance in this example will be 
estimated by the number of observed counts plus one (see Section 19.5.2.2 and Section 19D.3 of 
Attachment 19D). So, for example, u(NB, 238) equals one, not zero. 

Table 19.4 summarizes the input estimates and their standard uncertainties. 

Other possible sources of uncertainty in alpha-particle spectrometry measurements include: 
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2 968 / (60,000 s)2 % 3 / (60,000 s)2 
u (Yg ) ' c 

(0.0705 Bq/mL)2 ×(1  mL)2 ×0.982 ×12 

0.00202 
% 

0.00572 
% 

0.011552 
% (0.82990×0.2805)2 

0.07052 12 0.982 

' 0.0001094007 

' 0.010462 

and 

2 76 / (60,000 s)2 % 1 / (60,000 s)2 
uc (a238) ' 

(0.5017 g)2 ×(0.82990×0.2805)2 ×0.982 ×0.99902 

(2.2×10&4)2 0.010462 
% 

0.011552 
% 

0.02822 
% (0.010932 Bq/g)2 % 

0.50172 (0.82990×0.2805)2 0.982 12 

' 1.98915 × 10&6 Bq2 /g2 

' (0.001410 Bq/g)2 

So, uc(a238) = 0.00141 Bq/g or 1.41 Bq/kg. If the result is to be reported with an expanded 
uncertainty calculated from the combined standard uncertainty uc(a238) and a coverage factor 
k = 2, the result should appear as (0.0109 ± 0.0028) Bq/g or (10.9 ± 2.8) Bq/kg (dry weight). 

Measurement Uncertainty: Example Calculations 

  � uncertainties in half-lives and decay times;
  � spillover and baseline interferences caused by poor peak resolution;
  � incomplete equilibration of tracer and analyte before chemical separation; and
  � changing  instrument background. 

These uncertainties are evaluated as negligible in this example. Uncertainties associated with 
half-lives and decay times are negligible, because the decay times in the example are much 
shorter than the half-lives; but in practice one should confirm that any other uncertainties are 
small enough to be neglected. 

When values are inserted into the formulas 
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ATTACHMENT 19C 
Multicomponent Measurement Models 

19C.1  Introduction 

In this attachment, the term �multicomponent measurement model� means a mathematical model 
with more than one output quantity calculated from the same set of input quantities. One com-
mon application of a multicomponent model is the determination of a calibration curve involving 
two or more parameters. In principle, the approach to uncertainty propagation described in Sec-
tion 19.4 applies equally  well to single-component or multicomponent models. However, a 
straightforward implementation of the uncertainty propagation formula for some multicomponent 
models may be tedious unless software for automatic uncertainty propagation is available. 

At the time of this writing, the joint working group responsible for the GUM is reported to be 
developing  additional guidance to deal with multicomponent models, but the guidance is not yet 
available. 

19C.2  The Covariance Matrix 

A multicomponent model is most naturally described in terms of vectors and matrices, and the 
remainder of this attachment assumes the reader is familiar with those concepts and with the 
notation commonly used to describe them. The single-component model, Y = f(X1,X2,�,XN), 
which was used earlier, is now replaced by a multicomponent model, Y = f(X), where X and Y 
denote column vectors and f denotes a vector-valued function of X. The input vector, which is 
formed from the input estimates, xj, will be denoted by  x, and the output vector, which is formed 
from the output estimates, yi, will be denoted by  y. The estimated variances and covariances of all 
the input estimates are arranged in a square matrix, called the covariance matrix and denoted 
here by  u2(x), whose ijth element equals the covariance u(xi,xj). Application of the covariance 
equation in Section 19.4.4 leads to the following  expression for the covariance matrix of the out-
put vector, y. 

 

 

 

u2(y) ' u2(x) (19.46) 
Mx Mx 

) Mf Mf 

In this equation, Mf / Mx denotes the matrix whose ijth element is Mfi / Mxj. 

19C.3  Least-Squares Regression 

One application for which specialized multicomponent methods for uncertainty propagation may 
be useful is least-squares regression. For example the method of least squares may be used to 
find an approximate solution, y� , of a matrix equation of the form 
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Ay – b (19.47) 

where the components of the vector b have uncertainties. The least-squares solution for this prob-
lem can usually be expressed as 

y� ' (A) WA)&1A) Wb  (19.48) 

where W denotes a diagonal weight matrix, whose ith diagonal element is the inverse of the var-
iance of bi. If there is no uncertainty in the matrix A, and the elements of b are uncorrelated, then 
the covariance matrix for y�  is given simply by 

u2(y�) ' (A) WA)&1 (19.49) 

If there are uncertainties in the elements of A, the expression above is incomplete. Suppose the 
elements of A are functions of variables z1, z2, �, zr, whose estimated variances and covariances 
are available. Arrange these variables, zj, in a column vector, z, and let u2(z) denote the 
covariance matrix. If the bi are not correlated with the zj, then a more complete expression for the 
covariance matrix of y�  is the following. 

My� My� u2(y�) ' (A)WA)&1 % u2(z) 
) 

(19.50) 
Mz Mz 

The derivative matrix, My� / Mz, which appears above, may be calculated column by column. The 
jth column of My� / Mz is given by the formula 

My� MA) 

y) & A) W 
MA 

' (A) WA)&1 W (b & A � y� (19.51) 
Mzj Mzj Mzj 

where MA / Mzj denotes the matrix obtained from A by differentiating each element with respect 
to zj. If the uncertainties in the matrix A are large, even this method of uncertainty propagation 
may be inadequate (e.g., see Fuller, 1987). 

19C.4  References 

Fuller, Wayne A. 1987. Measurement Error Models. John Wiley and Sons, New York, NY. 
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ATTACHMENT 19D 
Estimation of Coverage Factors 

19D.1  Introduction 

Although it is common for laboratories to use a fixed coverage factor such as 2 or 3 when deter-
mining an expanded uncertainty for a measured value, the true coverage probability for the resul-
ting interval may be lower than expected if the standard uncertainties of the input estimates are 
determined from evaluations with too few degrees of freedom. This attachment summarizes a 
general method presented in Annex G of the GUM for determining appropriate coverage factors 
in these circumstances (ISO, 1995). Section 19D.3 applies the method to Poisson counting uncer-
tainties. 

19D.2  Procedure 

19D.2.1  Basis of Procedure 

When one evaluates a parameter, θ, statistically by making a series of n independent, unbiased 
measurements under the same measurement conditions and averaging the results, xi, if the results 
are approximately normally distributed, a confidence interval for θ may be constructed using the 
fact that the quantity ( x̄  ! θ) / s(x̄)  has a t-distribution with ν = n ! 1 degrees of freedom. If the 
desired confidence level is p, then the confidence interval is x̄ ± t s(x̄) , where t = t(1+p)/2(ν) is the 
(1 + p) / 2-quantile of a t-distribution with ν degrees of freedom. Here, x̄  is the result of the 
measurement of θ, and s(x̄)  is its standard uncertainty (Type A). The quantile, t, is the coverage 
factor that makes the coverage probability equal to p. For smaller values of ν, larger values of t 
are necessary to give the same coverage probability, because of the increased variability of the 
variance estimator, s 2(x̄) . 

The procedure described below is derived by assuming that the output estimate, y, for a more 
complex measurement and the combined standard uncertainty, uc(y), can take the place of x̄  and 
s(x̄) , respectively, in the confidence interval above; and that the appropriate coverage factor, kp, 
can be approximated by a quantile of a t-distribution with an appropriate number of degrees of 
freedom. The number of degrees of freedom is determined from the estimated coefficient of vari-
ation of the variance estimator, uc

2(y) . 

19D.2.2  Assumptions 

Assume the mathematical model for a measurement is Y = f(X1,X2,�,XN), the input estimates 
x1, x2, �, xN are independent, and the output estimate is y = f(x1,x2,�,xN). Also assume that the 
combined standard uncertainty of y is not dominated by one component determined from a Type 
A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-
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Measurement Uncertainty: Estimation of Coverage Factors 

bution very different from a normal distribution. Then the distribution of the output estimate y 
should be approximately normal, and the following procedure may be used to obtain a coverage 
factor, kp, for the expanded uncertainty of y that gives a desired coverage probability, p. 

19D.2.3  Effective Degrees of  Freedom 

First compute the effective degrees of  freedom of the measurement,  νeff, using  the Welch-
Satterthwaite formula 

Here ui(y) = |Mf / Mxi| u(xi) is the component of the combined standard uncertainty generated  by 
u(xi). If  u(xi) is evaluated by a Type A method, then νi is the number of degrees of freedom for 
that evaluation. If  u(xi) is evaluated instead by a Type B method, then νi may be defined as 

ν i ' 
1 
2 

u 2(xi) 

σ2 u(xi) 
' 

1 
2 

∆u(xi) 
u(xi) 

&2 

(19.53) 

where ∆u(x ) is the estimated standard deviati the standard uncertainty, u(xi), and σ2
i on of (u(xi)) 

denotes its square. This definition of νi for a Type B evaluation is an approximation based on the 
relationship between the number of degrees of freedom for a Type A evaluation and the coeffi-
cient of variation of the uncertainty estimator. In most cases estimation of  ∆u(xi) is subjective and 
requires professional judgment.20 

In some cases one may consider the value of ∆u(xi) for a Type B standard uncertainty to be zero 
or negligible, as for example when evaluating  the uncertainty associated with rounding  a number 
(Section 19.5.11) or when the standard uncertainty estimate, u(xi), is very conservative. In such 
cases one may assume  νi = 4; so, the  ith term  of the sum appearing  in the denominator of the 
Welch-Satterthwaite  formula vanishes. 

If an input estimate, xi, and its standard uncertainty, u(xi), are taken from a calibration certificate, 
the effective degrees of freedom for u(xi) may be stated on the certificate. In this case the stated 
number of degrees of freedom should be used as νi. 

20 A more rigorously derived mathematical definition of  νi in terms of  ∆u(xi) exists, but its use is not warranted 
given the usually subjective nature of the estimate of  ∆u(xi) and the other approximations involved in the Welch-
Satterthwaite formula. 
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R g ' 
aS 

kp ' n % 1 & νeff t(1%p) /2(n) % νeff & n t(1%p) /2(n % 1) (19.55) 

The expanded uncertainty  Up = kpuc(y) is estimated to have a coverage probability approximately 
equal to p. 

EXAMPLE 19.31 

Problem: Refer to the efficiency-calibration problem presented in Example 19.20 in Section 
19.5.6. The efficiency for a radiation counter, g, is calculated using  the equation 

where R  (62.1854 s!1@g!1) and its uncertainty (0.2301 s!1@g!1) are determined from 15 replicate 
measurements (14 degrees of freedom), and aS (150.0 Bq/g) and its uncertainty (2.0 Bq/g) 
are obtained from a calibration certificate. The calculated efficiency is 0.4146 and its com-
bined standard uncertainty is 0.005736. 

 Measurement Uncertainty: Estimation of Coverage Factors 

The number of effective degrees of freedom, νeff, satisfies the following  inequalities. 

n 
min ν i # ν eff #  ν i (19.54) 

1# i#n i'1 
j

So, νeff is no worse than the worst value of  νi and no better than the  sum of  all the  νi. The maxi-
mum (best)  value  for  νeff in Equation 19.54 is attained only if each νi is proportional to u2 

i (y). This 
fact suggests that, at least for Type A uncertainty components, the fraction of the total uncertainty 
evaluation effort spent on a particular component, ui(y), should be based on the anticipated mag-
nitude of u2 

i (y). 

19D.2.4  Coverage Factor 

The coverage factor, kp, is defined to be the (1 + p) / 2-quantile, t(1 + p) / 2  (νeff), of a t-distribution 
with ν 21

eff degrees of freedom.  Since the calculated value of νeff will generally not be an integer, it 
must be truncated to an integer, or else an interpolated t-factor should be used. That is, if n < 
νeff < n + 1, then use either kp = t(1 + p) / 2  (lνeffm), where l@m denotes the truncation operator, or 

21 The GUM uses the notation tp(ν) to denote the (1 + p) / 2-quantile of a t-distribution with ν degrees of freedom 
(ISO, 1995), but the same notation in most statistical literature denotes the p-quantile (e.g., ISO, 1993). MARLAP 
follows the latter convention. 
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00 00

00 00

Mg 1 0.2301 s&1 @g&1 
uR(g ) ' / / u(R) ' u(R) ' ' 0.001534. 

MR aS 150.0 Bq/g 0 0 
The component generated by u(aS) is 

Mg R 62.1854 s&1 @g&1 
uaS

(g ) ' / / u(aS) ' u(aS) ' (2.0 Bq/g) ' 0.0055276. 
MaS 

2 (150.0 Bq/g)2 0 0 aS 

So, the number of effective degrees of freedom, νeff, for uc(g) is given by 

uc
4(g ) (0.005736)4 

' . 14.42 . νeff ' 
u 4(g ) u 4 (g ) 0.0015344 

% 0.00552764 
R aS 

% 15 & 1 12.5 νR νaS 

Since 14.42 is not an integer, an interpolated t-factor may be used (see Table G.2 in Appendix 
G). The coverage factor for 95 % coverage probability is 

' (15 & 14.42) t0.975(14) % (14.42 & 14) t0.95(15) ' (0.58)(2.145) % (0.42)(2.131) ' 2.139. k0.95 

So, the expanded uncertainty is 

(g ) ' (2.139)(0.005736) . 0.012. U0.95 ' k0.95 uc 

 Measurement Uncertainty: Estimation of Coverage Factors 

Assume the certificate states that the number of effective degrees of freedom for u(aS) is 12.5. 
Find the effective degrees of freedom for uc(g), the coverage factor, k0.95, that gives 95 % 
coverage probability, and the expanded uncertainty, U0.95. 

Solution: The component of the combined standard uncertainty of g generated by  u(R)  is 

19D.3  Poisson Counting Uncertainty 

As stated in Section 19.5.2.2, the standard uncertainty in the number of counts, N, observed 
during a radiation measurement may often be estimated by  u(N) = N , according  to the Poisson 
counting  model. This method of evaluating the standard uncertainty is a Type B method; so, the 
effective degrees of freedom ν for the evaluation should be determined from ∆u(N). The standard 
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u(N) ' N and ν ' 2N (19.56) 

or, if very low counts are possible, by 

u(N) ' N % 1  and  ν ' 2(N % 1) (19.57) 

Measurement Uncertainty: Estimation of Coverage Factors 

deviation of N  is always less than 0.65.22 If  N is greater than about 10, the standard deviation of 
N  is approximately equal to 0.5, and, in this case, Equation  19.53 gives  the  estimate  ν  . 2N. 

For smaller values of  N, the same approximation is inadequate. 

MARLAP recommends that the standard uncertainty, u(N), and degrees of freedom, ν, for a 
Poisson measured value, N, be estimated  by 

If the expected count is greater than about 10, these formulas tend to give a coverage probability 
near the desired probability, p. When the expected count is small, the coverage probability tends 
to be greater than p. 

Although the estimate u(N) = N % 1  may be derived by the Bayesian approach to counting 
statistics assuming  a flat prior distribution for the mean count (Friedlander et al., 1981), the 
recommended expressions for u(N) and ν in Equation 19.57 have been chosen for the purely 
practical reason that they are simple and seem to give satisfactory results. When the count is low, 
the assumptions underlying  the Welch-Satterthwaite formula are usually violated, because the 
combined standard uncertainty is dominated by  counting uncertainty, and the distribution of the 
count is not normal. However, even in this case, if the formula is used, the recommended expres-
sions for u(N) and ν tend to give conservative results. 

EXAMPLE 19.32 

Problem: An alpha spectrometer is used to make a 60,000-second blank measurement fol-
lowed by a 60,000-second sample measurement. The observed blank count is 2 and the 
observed sample count is 0. The net count rate is modeled as 

22 Taking  the square root of a Poisson random variable is a common variance-stabilizing transformation, as 
described in Chapter 20 of  Experimental Statistics (NBS, 1963). The stated (slightly conservative) upper bound for 
the standard deviation of  N  is based on calculations performed at the EPA�s National Air and Radiation Environ-
mental Laboratory, although the same approximate value may be determined  by  inspecting  Figure 20-2  of NBS 
(1963). The precise calculation  maximizes a  function f(x) whose value is  the variance of  the square root of a Poisson 
random variable with mean x. The first derivative of  f is positive, decreasing  and convex between x = 0 and the 
location of the maximum of the function at x = 1.31895; so, Newton�s Method converges to the solution  from 
below. The maximum value of  f is found to be (0.642256)2. 
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RN ' 
NS 

tS 

& 
NB 

tB 

where 
RN is the net count rate (!3.333 × 10!5 s!1); 
NS is the sample count (0); 
tS is the sample count time (60,000 s); 
NB is the blank count (2); and 
tB is the blank count time (60,000 s). 

Assume the only source of uncertainty is Poisson counting statistics. Determine the effective 
degrees of freedom for uc(RN) and the coverage factor, k0.95, that gives 95 % coverage proba-
bility. 

Solution: Since very low counts are possible, 

u(NS) ' NS % 1 ' 1 and νNS 
' 2(NS % 1) ' 2 

u(NB) ' NB % 1 ' 1.732 and νNB 
' 2(NB % 1) ' 6 

Then 

u (RN) ' c

u 2(NS) 

t 2 
S 

% 
u 2(NB) 

t 2 
B 

' 
1 

(60,000 s)2 
% 

3 
(60,000 s)2 

' 3.333 × 10&5 s&1 

) ' uNS
(RN / 

0 
MRN 

MNS 

/ 
0 
u(NS) ' 1 

tS 

NS % 1 ' 1 
60,000 s 

' 1.667 × 10&5 s&1 

(RN) ' uNB
/ 
0 
MRN 

MNB 

/ 
0 
u(NB) ' 1 

tB 

NB % 1 ' 1.732 
60,000 s 

' 2.887 × 10&5 s&1 

So, the number of effective degrees of freedom is 

uc
4(RN) (3.333 × 10&5)4 

' ' 8 νeff ' 
uN 

4
S
(RN) uN 

4
B
(RN) (1.667 × 10&5)4 

% (2.887 × 10&5)4 

% 
νNS 

νNB

2 6 
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Measurement Uncertainty: Estimation of Coverage Factors 

Then the coverage factor for a 95 % coverage probability is obtained from Table G.2 in 
Appendix G. 

(8) ' 2.306 k0.95 ' t0.975 

Notice that in this example, νeff ' νNS 
% νNB

, but this equality would not hold if the count times 
for the sample and blank were unequal. 

Also notice that the net count rate in this example is negative. Negative results may be com-
mon when environmental samples are analyzed for anthropogenic radionuclides. 
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ATTACHMENT 19E 
Uncertainties of Mass and Volume Measurements 

19E.1  Purpose 

This attachment describes methods that may be used to evaluate the measurement uncertainty of 
a mass or liquid volume measurement. The first purpose of the attachment is to provide methods 
for more complete evaluations of these uncertainties than those presented earlier in Sections 
19.5.9 and 19.5.10. A second purpose is to provide additional examples of uncertainty evalua-
tions, and especially Type A evaluations based on historical data, as described in Section 
19.4.2.1. 

A third purpose of the attachment is to provide information about the sources of error in mass 
and volume measurements that may be useful for establishing reasonable quality control criteria. 
Even if one assumes that weighing and pipetting errors are negligible, the quality control for bal-
ances and volumetric apparatus should be strict enough to ensure the assumption is true. Some of 
the sources of error described below will undoubtedly be considered negligible in many radio-
chemical measurement processes, yet they may be too large to be ignored in a strict quality con-
trol program. 

The existence of the attachment is not meant to imply that the uncertainties of mass and volume 
measurements tend to be relatively important in a radiochemistry laboratory. In fact the relative 
standard uncertainties of mass and volume measurements tend to be small if the measurements 
are made properly using appropriate instruments, and they may even be negligible in many cases 
when compared to other uncertainties associated with radiochemical analysis (e.g., see Section 
19.5.12, �Subsampling�). However, one needs to know the performance limits of any measuring 
instrument. For example the measurement uncertainty may actually be relatively large if a labora-
tory balance is used to weigh a mass that is too small for it. The uncertainty may also be large in 
some cases if the sensitivity of the balance varies slightly between tare and gross measurements. 

19E.2  Mass Measurements 

19E.2.1  Considerations 

Regardless of the methods used to evaluate balance measurement uncertainty, the results may be 
misleading unless the balance is well maintained and protected from external influences, such as 
drafts and sudden changes in pressure, temperature and humidity. 

The appropriate method for evaluating the standard uncertainty of a mass measured using a bal-
ance depends on the type of balance, including its principles of calibration and operation, but the 
uncertainty of the measured result generally has components associated with balance sensitivity, 
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linearity, repeatability, and air buoyancy. Typically, the component associated with sensitivity 
includes the uncertainty of calibration and may include variability caused by changing environ-
mental conditions, such as temperature. Other sources of uncertainty may include leveling errors 
and off-center errors, which should be controlled. Static electrical charges may also have an 
effect. Changes in mass (e.g., by absorption or evaporation of water) may be very significant for 
some materials. 

19E.2.2  Repeatability 

The repeatability of a balance is expressed as a standard deviation and is usually assumed to be 
independent of the load. It represents the variability of the result of zeroing the balance, loading a 
mass on the pan, and reading the indication. 

Balance manufacturers provide specifications for repeatability, but a test of repeatability should 
also be part of the routine quality control for the balance (see ASTM E898). The simplest pro-
cedure for evaluating repeatability is to make a series of replicate measurements of a mass stan-
dard under �repeatability conditions.� Repeatability conditions require one balance, one observer, 
one measurement location, and repetition during a short time period. For each measurement one 
must zero the balance, load the mass standard, and read the balance indication. 

EXAMPLE 19.32  Suppose a laboratory balance has readability 0.0001 g, and, according to the 
manufacturer, the repeatability is also 0.0001 g. An analyst performs a series of 28 measure-
ments using a 1-gram mass standard to check the repeatability. The results are listed below. 

1.0001 0.9996 0.9999 1.0002 
1.0002 0.9999 0.9999 1.0001 
0.9998 0.9999 1.0000 1.0001 
0.9999 0.9999 0.9999 1.0001 
0.9998 0.9998 1.0000 0.9998 
0.9996 0.9999 0.9999 1.0000 
1.0002 0.9999 1.0001 1.0004 

The analyst calculates the average, W , and standard deviation, s, of these values (Wi) as 
follows. 

1 28 
W ' Wi ' 0.9999607 g 

28 ji'1 

1 28 
s ' (Wi & W)2 ' 0.00018 g 

28 & 1 ji'1 

So, the analyst evaluates the repeatability to be 0.00018 g. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 
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sr ' 
K 1 

K (J & 1) j 
k'1 

J 

j 
j'1 

(xk, j & x̄k)
2 (19.58) 

where 
sr is the estimated repeatability standard deviation; 
J is the number of repetitions per session; 
K is the number of sessions; 
xk,j is the jth result obtained in the kth session; and 
x̄  k is the average of all the results in the kth session. 

The repeatability standard deviation determined by this method is a Type A standard uncertainty 
with K (J ! 1) degrees of freedom. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

In this example, since the mass standard is so small, it  may not be important that all the meas-
urements be made during  a short time period. Environmental factors produce relatively small 
day-to-day variability in the balance indication, and this variability may not be observable for a 
1-gram load. So, the repeatability might be evaluated using the results of 28 routine quality 
control measurements. 

A nested experimental design can also be used to evaluate both the repeatability and the day-to-
day (or hour-to-hour) variability due to environmental factors. In this procedure, one makes a 
series of replicate measurements with the same mass standard each  day for a number of days, or 
perhaps in a morning  session and afternoon session each day. Ideally, one should use a mass near 
the capacity of the balance to obtain the most reliable estimate of day-to-day variability, but 
almost any mass in the balance�s range will do for an estimate of repeatability. The  repeatability 
standard deviation is estimated by 

19E.2.3  Environmental Factors 

The correct method for evaluating the balance measurement uncertainty due to environmental 
factors depends strongly on the method and frequency of calibration. Some balances, especially 
newer models, have internal calibration masses, which allow frequent calibration with only the 
push of a button. Other balances use external calibration mass standards and require more care in 
the calibration process.  Balances of the latter type in many  cases are calibrated infrequently. If a 
balance is calibrated immediately before a measurement, then the uncertainty due to environ-
mental factors can be considered to be zero. However, if hours or days pass between the time of 
calibration and the time of measurement, then this uncertainty component may be significant. For 
the remainder of this subsection, the latter case is assumed. 

JULY 2004 19-95 MARLAP 



     
  

 

 
 

 
 

 

  
   

 

 

Given the nested experimental data from the preceding section, one may estimate the variability 
due to environmental factors (day-to-day or hour-to-hour variability) as follows.23 

2 s 2 1 K 
r s ' (x̄k & x)2 & (19.59) env K & 1 k

j
'1 J 

where 
se

2
nv is the estimated variance due to environmental factors and 

x is the grand average of all the data (the average of the x̄  k ). 

If se
2
nv is found to be positive, then senv is estimated by its square root; otherwise, senv is assumed to 

be zero. One estimates the relative component of standard uncertainty of a measured mass due to 
environmental factors by 

senv φenv ' (19.60) mcheck 

where mcheck is the mass of the standard used in the experiment. 

If the variability due to environmental factors is large, its magnitude can also be estimated by 
weighing a heavy mass standard once per day for a number of days, or perhaps once in the morn-
ing and once in the afternoon of each day. Clearly, the observed variability will include the 
effects of both environmental factors and repeatability, but environmental factors presumably 
dominate when a heavy mass is weighed, because their effect is proportional to the mass, 
whereas the repeatability is essentially constant at all masses. So, the observed variability can be 
used as a reasonable estimate of the variability due to environmental factors alone. 

EXAMPLE 19.33  Suppose a laboratory balance has readability 0.0001 g, repeatability 
0.0001 g, and a capacity of approximately 110 g. An analyst performs QC measurements using 
masses of 1, 50, and 100 g. The results obtained using the 100-gram mass standard during a 
certain time period are as follows: 

99.9992 99.9989 99.9986 100.0008 
100.0001 99.9990 100.0002 100.0010 
99.9993 99.9988 100.0003 99.9975 
99.9989 100.0015 99.9989 99.9981 
99.9992 99.9992 100.0012 100.0009 

100.0002 99.9997 100.0002 100.0005 
99.9989 99.9990 100.0011 99.9991 

23 An F-test may be used to test for the presence of variance due to environmental factors. If this variance is zero, 
then the quantity Jsx̄

2 / sr 
2 , where sx̄

2  denotes the experimental variance of the averages x̄  i , may be assumed to have 
an F-distribution with K ! 1 numerator degrees of freedom and K(J ! 1) denominator degrees of freedom. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 
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The average, W , and standard deviation, s(Wi), of these values are calculated below. 

1 28 
W ' Wi ' 99.9996536 g 

28 ji'1 

1 28
(Wi & W)2 ' 0.001016 g 

28 & 1 js(Wi) ' 
i'1 

Since this standard deviation is much larger than the repeatability, 0.0001 g, essentially all of 
the variability may be attributed to environmental factors. The estimate is slightly inflated by 
the balance�s repeatability variance, but the difference in this case is only about 0.5 % of the 
value shown. So, the relative standard uncertainty due to environmental factors is estimated as 

0.001016 φ ' . 1.0 × 10&5 
env 100 

2 
% δ2 sr cal / 6  

φ2 
% (19.61) env φcal ' 

2 mcal 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

19E.2.4  Calibration 

The uncertainty of calibration includes components associated with the mass standard or stan-
dards, repeatability, and variability due to environmental factors. 

When a precision mass standard is used for calibration, the standard uncertainty of its mass is 
generally negligible. However, the uncertainty may be evaluated if necessary from the specified 
mass tolerance. For example, a 100-gram ASTM Class-1 mass standard has a tolerance of 
0.00025 g, which may be assumed to represent the half-width of a triangular distribution centered 
at zero (ASTM E617). The standard uncertainty may be found by  dividing this tolerance by  6 
and is approximately 0.00010 g, or 1.0 × 10!6 when expressed in relative terms. 

The total relative standard uncertainty of a  mass measurement due to calibration may be esti-
mated as follows. 

where 
φcal is the total relative standard uncertainty of a balance measurement due to calibration; 
φenv is the relative standard uncertainty due to environmental factors; 
sr is the repeatability standard deviation; 
δcal is the tolerance for the mass of the calibration standard; and 
mcal is the mass of the standard used for calibration. 
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FIGURE 19.13 � Nonlinear balance response curve 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

If environmental conditions are not well-controlled, φenv may tend to dominate the other compo-
nents here, since both sr and δcal are much smaller than mcal. 

19E.2.5  Linearity 

The linearity of a balance should be specified by the manufacturer as a tolerance, aL, which repre-
sents the maximum deviation of the balance indication from the value that would be obtained  by 
linear interpolation between the calibration points. Routine quality control  should ensure that the 
linearity remains within acceptable limits. 

The Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement recommends 
that the linearity tolerance aL be treated as the half-width of a rectangular distribution and that aL 
therefore be divided by  3  to obtain the standard uncertainty  (Eurachem, 2000). However, since 
the linearity error is likely to vary as a sinusoidal function of the load, as illustrated in Figure 
19.13, the divisor 2  may be more appropriate. So, the standard uncertainty due to linearity for a 
simple mass measurement may be evaluated as aL / 2 . Whether one uses 3  or the more 
conservative value 2  depends partly on how conservative one believes the estimate of aL to be. 

19E.2.6  Gain or Loss of  Mass 

When gain or loss of mass is a relevant issue, as for example when the material being weighed is 
a volatile liquid or a hygroscopic solid, the mass should be treated as a function of time. One 
method of determining  this function is to weigh the material at different times, recording both the 
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m ' Inet B (19.62) 

where 

B ' 
1 & kA, C 

1 & kA, M 

/ kC 

/ kM 
(19.63) 

and 
m is the corrected value for the mass of the material being weighed; 
Inet is the net balance indication; 
B is the buoyancy-correction factor; 
kM is the density of the material being weighed; 
kAM is the density of the air at the time the material is weighed; 
kC is the density of the calibration mass standard; and 
kAC is the density of the air at the time of calibration. 

The standard uncertainty of B may be obtained as follows. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 

time and the observed mass, and fit a line or curve to the resulting data points. One can then cal-
culate the mass at a particular time of interest (e.g., before any  gain or loss occurred, or perhaps 
during  the period when the material was in a radiation counter). If possible, it is better to weigh 
the material both before and after the time of interest to avoid  extrapolating the curve to points in 
time where its accuracy may be unknown. However, in some situations extrapolation may be 
necessary, as for example when determining  the dry mass of a hygroscopic precipitate. 

The standard uncertainty of a mass calculated in this manner includes components for curve-
fitting errors. 

19E.2.7  Air-Buoyancy Corrections 

Air-buoyancy corrections are not often performed in radiochemistry laboratories, because they 
are usually negligible in comparison to the overall uncertainty of the result. However, when the 
measurand is the mass itself and not some other quantity such as a radionuclide concentration 
whose calculated value depends on the mass,  buoyancy corrections may be important. Failure to 
correct for air buoyancy when weighing  water, for example, introduces a relative error of 
approximately  !0.1 %, which may be much larger than the standard uncertainty of the un-
corrected mass (e.g., when weighing  a gram or more of an aqueous solution on a typical four-
place analytical balance). 

When a buoyancy-correction factor is used, the true mass is estimated as follows. 
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kA ' k0 
273.15 K 

273.15 K % t 
p & (0.3783)φeS 

101.325 kPa 
(19.65) 

  

ap & φ (bt  & c) kA ' (19.66) 273.15 K % t 

where 
a   =  3.48589 × 10!3 K @ s2 / m2; 
b   =  2.5211151 × 10!4 g / mL; and 
c   =  2.0590571 × 10!3 K @ g / mL. 

Measurement Uncertainty: Uncertainties of Mass and Volume Measurements 
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(19.64) 

Evaluation of this uncertainty requires estimates of  kM, kC, kAM and kAC as well as their standard 
uncertainties and covariances. The covariance u(kAC, kC) is usually zero or negligible, and 
u(kAM, kM) also is usually negligible if the material being  weighed is a solid. 

Clearly, u(B) tends to be no more significant in a radiochemical measurement than the factor B 
itself is, but it may generate a large fraction of the uncertainty of the mass, m, since the uncer-
tainty of the mass is often tiny. 

The density of air (kA) depends on temperature, pressure, and humidity, as shown in the 
following equation. 

where 
kA is the density of air; 
k0 is the density of dry air at 0 EC and 101.325 kPa (1 atm); 
t is the Celsius temperature; 
p is the barometric pressure; 
φ is the relative humidity (a fraction between 0 and 1); and 
eS is the saturation vapor pressure of water at  temperature t. 

The vapor pressure, eS, is a nonlinear function of t, but it can be approximated by a linear func-
tion in the range of temperatures typically encountered in the laboratory. When this approxima-
tion is made, the resulting  equation for the air density may be written as follows. 
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